Applied Physics
Hanan H. Kadhim; Noor Hasan; Adawiya J. Haider
Abstract
Revolutionary developments have been started in the field of superconductors since their discovery. High-temperature superconductors have been a focus of attention in advanced technology for many scientists because of their potential applications. Therefore, many changes are made in the products that ...
Read More ...
Revolutionary developments have been started in the field of superconductors since their discovery. High-temperature superconductors have been a focus of attention in advanced technology for many scientists because of their potential applications. Therefore, many changes are made in the products that use such materials. It remains one of the most exciting research fields and can revolutionize the physics and technology of the future. It is required to understand and learn the history and basic principles of Superconductivity for its better implications. Considering its recent discoveries, its current applications can be studied. The mechanism of ‘HTS’ is much easier to understand after the significant development made in the field of Superconductivity. The purpose of this work is to better understand and appreciate research in the field of Superconductors. Basically, HTS has been used in many areas, but much progress is needed. HTS can be used in optoelectronics technologies and countless other applications after the effects seen by such improvements. In particular, this review focuses on the high-temperature BSCCO compound and its manufacture by the Solid-State reaction method and the PLD technique, which could be useful to electronics technology, particularly optoelectronic devices applications. Superconducting electronics devices have a lot of promise for future high-efficiency optoelectronics.
Nanotechnology
Maha A Al-Kinani; Adawiya Haider; Sharafaldin Al-Musawi
Abstract
Drug delivery using nanocarriers is recommended to decrease the drug amount. To improve the different therapeutic characteristics of curcumin (CU) such as solubility, bioavailability, maintenance endorsement, and make it a promising, successful antitumor drug used for prostate cancer treatment. It was ...
Read More ...
Drug delivery using nanocarriers is recommended to decrease the drug amount. To improve the different therapeutic characteristics of curcumin (CU) such as solubility, bioavailability, maintenance endorsement, and make it a promising, successful antitumor drug used for prostate cancer treatment. It was introduced to folate decorated chitosan (CS) coated Fe@Au NPs (FA-CU-CS-Fe@Au NPs). Fe@Au nanoparticle contains magnetic Fe NP’s core with a fine layer of Au NP’s synthesized using the method Pulsed, Laser, Ablation in Liquid (PLAL). These Fe@Au NP’s characterized by UV-Visible Spectrophotometer, High-Resolution, Transmission Electron Microscopy, (HRTEM), and Field Emission Scanning, Electron, Microscopy (FESEM). The smallest nanosize and the best result was obtained at different laser wavelength (532, 1064) nm. The mean size gained of Fe@Au NPs were (67.65, 77.88) nm. Obtained results exhibited that the laser wavelength plays a key role in the size, and dispersity of Fe@Au NPs. CU loaded FA-CS-Fe@Au NPs MTT assay on human prostate cancer cell line (PC3) proved that CU cytotoxicity can improve when they are loaded on (FA-CS-Fe@Au NPs) when comparing it with free CU.