Nanotechnology
Wasan Ziedan; Mukhlis M. Ismail; Wafaa A. Hussain
Abstract
Aqueous solutions with heavy metals such as Cr (VI), Pb, and Cd (II) can have an adverse effect on human health because of their toxicity. As a result, it is important to remove these heavy metals from the aquatic environment to save the human healthy. X-ray diffraction (XRD), Fourier-transform infrared ...
Read More ...
Aqueous solutions with heavy metals such as Cr (VI), Pb, and Cd (II) can have an adverse effect on human health because of their toxicity. As a result, it is important to remove these heavy metals from the aquatic environment to save the human healthy. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FE-SEM) used in this research to characterize cobalt ferrite (CoFe2O4) nanoparticles and confirm the structure of Co-Fe2O4. These particles were used to make porous samples and burned at 1050 °C in mixtures of (0, 3, 5, 7, and 10) wt.% of cobalt ferrite and kaolin with 20 wt.% of charcoal. These samples serve as adsorbents that remove Pb from the wastewater. The highest rates of removal were confirmed using various treatments at (pH 3, 7, and 9). A Williamson-Hall plot was used to determine the crystal size (33) nm. The FT-IR spectra exhibited spinel-ferrite characteristics. Studies using FE-SEM demonstrated that the sample was in Nano crystalline. Using a vibrating sample magnetometer (VSM), different magnetic properties are taken from the hysteresis loops such as saturation magnetization (Ms) and remanence (Mr) and coercivity (Hc). It was found that increasing ferrite content, increased adsorption efficiency.
Applied Physics
Sarmad A. Ibrahim; Sadeq H. Lafta; Wafaa A. Hussain
Abstract
A stainless steel 316L (SS316L) wires reinforcing heat cure PMMA matrix samples were prepared for dentures applications. Mechanical scratching and electrochemical anodizing for PMMA denture base supported by wires of SS316L were used as straightforward and low-cost outside layer pretreatments. The two ...
Read More ...
A stainless steel 316L (SS316L) wires reinforcing heat cure PMMA matrix samples were prepared for dentures applications. Mechanical scratching and electrochemical anodizing for PMMA denture base supported by wires of SS316L were used as straightforward and low-cost outside layer pretreatments. The two pretreatments were used to improve the flexural strength of PMMA denture bases. The mechanical scratching process acts to scratch the surface of stainless-steel wires by mixing the wires with silicon carbide powder inside a rotating Pyrex container. The pretreatment time was varied to be 60, 90, and 120min. The anodizing solution, containing ethylene glycol (EG) with HClO4 acid, was used with a 15V supply and a graphite rod as a cathode in the anodizing process. A variation in the pretreating time to be 15, 20, and 30min for the electrochemical anodizing process was included. A scanning electron microscope was utilized to examine the morphology of surfaces of the SS316L wires, which showed various morphology natures. The mechanical flexural strength test was conducted for all samples statistically to check the results. The flexural strength test results of the composite sample groups of PMMA reinforced with the scratched surface for 90 min stainless steel wire 316L presented the highest flexural strength value (113 MPa) with a 66% increment. All results proved that reinforcing PMMA by ss 316L are enhancing the flexural strength by comparing the results with previous works and pointing to the activity of the used scratching process.
Nanotechnology
Fatin A. Asim; Entessar H. A. Al-Mosawe; Wafaa A. Hussain
Abstract
Denture base poly (methyl methacrylate (PMMA) resin is one of the most frequently used materials in denture base synthesis, but due to its poor mechanical properties, PMMA can be considered a medium for the attachment and growth of a variety of pathogenic bacteria and fungi, particularly due to PMMA's ...
Read More ...
Denture base poly (methyl methacrylate (PMMA) resin is one of the most frequently used materials in denture base synthesis, but due to its poor mechanical properties, PMMA can be considered a medium for the attachment and growth of a variety of pathogenic bacteria and fungi, particularly due to PMMA's pores and rough surface. The porosity percentage and surface roughness of the PMMA resin sample was lowered in this study, which resulted in a reduction in microorganisms' surface adhesion by varying the ratios of additives such as zinc oxide (ZnO) and tri-calcium phosphate (TCP) nanoparticles with (1, 2, 3, and 10% wt percent) for each additive separately, and 3% as a combination of ZnO and TCP nanoparticles in an equal ratio. Additionally, mechanical features such as surface hardness are developed, which is a critical attribute for polishing and easy finishing, as well as offering great scratch resistance during denture base cleaning. These results indicated that when compared to the other groups, PMMA (ZnO wt. 1%) and TCP-wt. 1%) reinforced composite resins demonstrated the best optimum properties. Additionally, it was discovered that adding 1% of NPs improved the mechanical qualities, which benefited the biological properties by reducing bacterial adherence to the PMMA composite resin.