Laser Science and Technology
Tuqa Sabah; kareem H. Jawad; Nebras Essam
Abstract
Along with its uses in a wide range of sectors, NP toxicity research was one of the fastest-growing areas of research, so the growing commercial applications brought aluminum oxide nanoparticles under the purview of toxicologists. This study shows the toxicity of Aluminum oxide Nanoparticles on blood ...
Read More ...
Along with its uses in a wide range of sectors, NP toxicity research was one of the fastest-growing areas of research, so the growing commercial applications brought aluminum oxide nanoparticles under the purview of toxicologists. This study shows the toxicity of Aluminum oxide Nanoparticles on blood components prepared using the pulsed laser ablation (PLA) Nd: YAG laser method. We confirmed the synthesis of aluminum Oxide nanoparticles by measuring color absorbance, UV-vis, scanning electron microscope techniques (SEM), and FTIR as characterization of Aluminum oxide Nanoparticles. The complete blood count (CBC) was used in the study of the toxicity effect of these nanoparticles on human blood parameters (in vitro). The results of hematology parameter platelet (PLT); hemoglobin (HGB–Hb); red blood cell (RBCs); white blood cell (WBCs); Count type white blood cells) are compared with the control groups, our results show no significant differences in levels of platelet (PLT); hemoglobin (HGB –Hb); red blood cell (RBCs); white blood cell (WBCs); Count type white blood cells) between the test groups when compared with control groups. This result that there indicates no toxic effect of Aluminum oxide nanoparticles in the hematology parameter (in vitro). This work is done for the first time to investigate the non-toxicity effect of these Al2O3 NPs on human blood parameters.
Laser Science and Technology
Kareem H. Jawad; Butheina Hasson
Abstract
Porous silicon nanoparticles, or PSNPs, are one of the most common NPS with distinct characteristics. PSNPs were created using an enhanced approach known as the electrochemical etching process. The nanoparticles were treated with a post-laser to obtain the nanoparticles, which were subsequently analyzed ...
Read More ...
Porous silicon nanoparticles, or PSNPs, are one of the most common NPS with distinct characteristics. PSNPs were created using an enhanced approach known as the electrochemical etching process. The nanoparticles were treated with a post-laser to obtain the nanoparticles, which were subsequently analyzed using (SEM), (UV-Vis), and (XRD). The size refers to porous silicon with a nanostructure. Because of the differences in interaction between the HF electrolyzed and silicon and crystal structure, PS (100) offers better NP properties than directional silicon (111). PSNPs' antioxidant activity was measured using the DPPH test, while cytotoxicity was measured using the MTT assay on Hella cells. PSNPs have an inhibitory impact on cancer cell growth and antioxidants, according to the findings. PSNPs did not have any toxicological effects on the skin, lungs, or spleen after injection.