Online ISSN: 2788-6867

Keywords : Fe@Au NPs

Study the Effect of Laser Wavelength on Polymeric Metallic Nanocarrier Synthesis for Curcumin Delivery in Prostate Cancer Therapy: In Vitro Study

Maha A Al-Kinani; Adawiya Haider; Sharafaldin Al-Musawi

Journal of Applied Sciences and Nanotechnology, 2021, Volume 1, Issue 1, Pages 43-50
DOI: 10.53293/jasn.2021.11023

Drug delivery using nanocarriers is recommended to decrease the drug amount. To improve the different therapeutic characteristics of curcumin (CU) such as solubility, bioavailability, maintenance endorsement, and make it a promising, successful antitumor drug used for prostate cancer treatment. It was introduced to folate decorated chitosan (CS) coated Fe@Au NPs (FA-CU-CS-Fe@Au NPs). Fe@Au nanoparticle contains magnetic Fe NP’s core with a fine layer of Au NP’s synthesized using the method Pulsed, Laser, Ablation in Liquid (PLAL). These Fe@Au NP’s characterized by UV-Visible Spectrophotometer, High-Resolution, Transmission Electron Microscopy, (HRTEM), and Field Emission Scanning, Electron, Microscopy (FESEM). The smallest nanosize and the best result was obtained at different laser wavelength (532, 1064) nm. The mean size gained of Fe@Au NPs were (67.65, 77.88) nm. Obtained results exhibited that the laser wavelength plays a key role in the size, and dispersity of Fe@Au NPs. CU loaded FA-CS-Fe@Au NPs MTT assay on human prostate cancer cell line (PC3) proved that CU cytotoxicity can improve when they are loaded on (FA-CS-Fe@Au NPs) when comparing it with free CU.