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Abstract 

Fibrinolytic enzyme is factor that lysis fibrin clots. This fibrinolytic 

factor has prospective use to treat cardiovascular diseases, such as 

stroke and heart attack. Cardiovascular diseases attracted worldwide 

attention for their elevation morbidity and mortality. Expensive cost 

and fatally undesired side effects associated with the available 

fibrinolytic agents to treat these diseases stimulated the researchers to 

investigate potentially better agents for curative applications. In the 

current investigation, fibrinolytic enzyme production from 

Pseudomonas aeruginosa isolated from injuries of wounds and burns 

patients. Parameters for the promoted production of the enzyme under 

minimal production media were optimized. It comprised carbon source 

(glucose), Nitrogen source (Yeast extract), Fibrinogen concentration 

(0.5 %), inoculum size (1 %), temperature (37°C), and PH (7). 

Enhanced fibrinolytic enzyme activity (136.2 IU/ml) was obtained 

after optimization Medium Components compared with that obtained 

with the minimal medium (60.2 IU/ml) which is 2.2 times higher than 

the same under non optimized production conditions. Media 

optimization researches for enhancement of fibrinolytic enzyme 

production from Pseudomonas aeruginosa in Iraq has not been 

performed so far. This may be the first study to optimization media for 

the production of fibrinolytic enzyme from Pseudomonas aeruginosa. 

The importance of this study lies in the enhancing the production of the 

fibrinolytic enzyme with high activity using these bacteria. 
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1.Introduction 

Thrombotic disorders are the main cause of death world. This is shown in the form of myocardial infarction, 

embolism, stroke etc. The various cardiovascular disorders (CVDs) caused formation of intravascular thrombus, 

which leads to death. In 2011 statistics of American Heart Association, presented about 31.3% death was caused 

by thrombosis, and on the report of the WHO 17 million persons were succumbing to thrombotic disorders every 

year [1]. Thrombotic disorders were recovered over the previous year’s using anticoagulants or antiplatelet 

agents like warfarin, heparin or by surgeries [2]. Fibrinolytic enzyme production by microorganisms differs 
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quantitatively and qualitatively depending on the species and strains of microorganisms used, also on their 

cultural conditions and own nutritional. The total cost of enzyme production is one of the major challenges 

concerning the cost-effective industrial application of the fibrinolytic Enzymes [3]. Many studied are available 

on the production of fibrinolytic enzymes from microorganisms, animals and plants, as well as purified from the 

venom of Elapidae, Viperidae and Crotalidae snake, from earthworms such as Lumbricus rubellus and Eisenia 

fetida, Catharsius molossus and from plants such as Spirodela polyrhiza[4,5]. P. aeruginosa is common in 

nature and causes many diseases for humans and animals including Wound and Burn infection, Endocarditis, 

Urinary Tract Infection, bacteremia that is why it is considered an important bacterial species [6]. Rarely causes 

the disease in healthy people and it is an opportunistic hospital bacterium, it is a real risk to patients who are in 

hospital, especially with patients who suffer from low in the immunity, such as individuals with Acquired 

immunodeficiency syndrome (AIDS). In addition to those with Burn and Wound infection [7]. The aim of this 

paper explains studies conducted on the isolation and characterization of the fibrinolytic enzyme producing 

bacteria and to improve bioprocess for the enhanced production of the fibrinolytic enzyme. P.aeruginosa, 

isolated from patients with wounds and burns infections in (Medical City) that located in the city of Baghdad, 

was found to be a potential producer of the fibrinolytic enzyme. 

2. Materials and Methods 

 

2.1 Patients, specimens, collection                                                                                                                                
The 43 isolates of P. aeruginosa were collected from wounds and burns infections, for the period from 

September 2020 until December 2020, samples were collected from educational laboratories in (Medical City). 

The specimens were diagnosed using Vitek 2 system for definitive diagnosis [8]. 

2.2 Determination of optimal bacterial isolate for the fibrinolytic enzyme production 

The optimal bacterial isolate for the fibrinolytic enzyme production was determined by estimated the raw 

enzyme efficacy was according to Chang method [9], where the specific efficacy of isolates was measured. 

2.3. Extraction of enzyme 

Extraction of enzyme was done   by using centrifugation for   production broth that contains the bacterial cells of 

P. aeruginosa at 1000 rpm for 10 min at 4°C.Then the supernatant that contain the crude enzyme was taken [10]. 

2.4 Determination of Protein Concentration 

Determined Protein concentration was done according to the method of Bradford (1976) [11]. A 50µl of 1 M 

NaOH was mixed with 20µl of crude enzyme and shacked for 2-3 minutes, then 1 ml of Bradford solution was 

added with shaking. The absorbance was measured at 595 nm by spectrophotometer. 

2.5 Determine the optimum carbon source production 

The optimal carbon source for the fibrinolytic enzyme production was determined by testing five different 

carbon sources (1.0%), which are) Sucrose - maltose - glucose-glycerol-starch (that added to the culture media. 

Then the medium was inoculated with a volume of 100 μl of P. aeruginosa and incubated for 24 hours at 37 ° C 

and pH 7, after which the activity of the fibrinolytic enzyme produced from the bacteria was determined through 

extracting the enzyme to find the optimum carbon source for fibrinolytic enzyme production 

2.6 Determine the optimum nitrogen source production 

The optimal nitrogen source for the fibrinolytic enzyme production was determined by testing five different 

nitrogen sources (1.0%), which are (peptone – casein – meat extract – yeast extract – ammonium sulfate) that 

added to the culture media. Then the medium was inoculated with a volume of 100 μl of P. aeruginosa and 

incubated for 24 hours at 37 ° C, and pH 7 with fixation of the optimal carbon source, after which the activity of 

the fibrinolytic enzyme produced from the bacteria was determined through extracting the enzyme to find the 

optimal nitrogen source for the production of the fibrinolytic enzyme [13]. 
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2.7 Determination of the optimum fibrinogen concentration production 

The optimal fibrinogen concentration for the fibrinolytic enzyme was determined by testing five different 

concentrations of fibrinogen (0.2, 0.4, 0.5, 0.6, and 0.8) % were added to the culture media, then the media was 

inoculated with a volume of 100 μl of P. aeruginosa and incubated for 24 hours at 37 ° C and pH 7 with the 

fixation of the optimal carbon and nitrogen sources. The activity of the fibrinolytic enzyme produced from the 

bacteria was determined after extracting the enzyme to find the optimum fibrinogen concentration [14]. 

2.8 Determine the optimum inoculum size production 

The inoculum size for optimal production of the fibrinolytic enzyme was determined by inoculated with different 

sizes (0.5,1,1.5,2,2.5%) of P. aeruginosa, and incubated for 24 hours at 37 ° C and pH 7. The optimal conditions 

of carbon, nitrogen and   fibrinogen concentration had fixation, then the activity of the fibrinolytic enzyme 

produced from the bacteria was determined after extracting the enzyme to find the optimum inoculum size for 

production [15]. 

2.9 Determine the optimum temperature enzyme production 

The optimum temperature for the fibrinolytic enzyme production was determined by culture medium containing 

1000 μl of P. aeruginosa at different temperatures (20 ,25 ,30 ,37, and 40) ° C in incubator for 24 hours. Then, 

the activity of the fibrinolytic enzyme produced from the bacteria was determined after extracting the enzyme, to 

find the optimum temperature for production [16]. 

2.10 Determine the optimum pH for enzyme production 

The optimal pH for the fibrinolytic enzyme production was determined by changing the pH of the culture media 

(5, 6, 7, 8, and 9). The media inoculated with 1000 μl of P. aeruginosa for 24 hours at 37 ° C, and then the 

activity of the fibrinolytic enzyme was determined after extracting the enzyme to find the optimum pH for 

production [16]. 

3. Results and Discussion 

3.1 Identification of bacteria 

The first Identification of bacteria done by used Vitek 2 system. The specimens were culturing on nutrient agar 

and incubates for 24 hours at 37 ° C. So, the result of study agreed with [17] (Table 1). 

 

Table 1: Characteristics of P. aeruginosa. 

 

3.2 Determine the optimum carbon source for production 

The rate of carbon source metabolism can effect on the rapid multiplication of cells and subsequent production 

of a necessary substance for metabolism [18]. The following carbon sources (Sucrose - maltose -glucose-

glycerol-starch) were adding to enzyme production media and incubated for 24 hours at of 37 ° C and pH 7, to 

find out the best carbon source for producing the enzyme. Results showed that the best carbon source is glucose 

and the highest specific efficacy was 108 U/mg. When using glucose, while the lowest specific efficacy was 14 

U/mg when using glycerol (Figure 1). The current study does not agree with [19] as the best carbon source was 

sucrose, but the least effective carbon source is glycerol. The difference in results depends on the conditions and 

location of the bacterial isolation. 
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Figure 1: The optimum carbon source for production. 

 

3.3. Determine the optimum nitrogen source for production 

The following nitrogen sources were tested (peptone - casein –meat extract -yeast extract - ammonium sulphate) 

to find out the best nitrogen source for enzyme production, through adding nitrogen sources to the enzyme 

production media and incubated for 24 hours at 37 ° C and pH 7 with fixation of the optimum carbon source. 

The results show that the best nitrogen source is Yeast extract and the highest specific efficacy reached 116.3 

U/mg when using glucose, while the lowest specific efficacy was 47.4 U/mg when using Peptone (Figure 2). The 

result agreed with result on the fibrinolytic enzyme production by Proteus [20]. 

 

Figure 2: The optimum nitrogen source for production. 
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3.4. Determination of the optimum fibrinogen concentration for production 

Five concentrations of fibrinogen (0.2, 0.4, 0.5, 0.6, and 0.8) % were tested to find the best concentration of 

fibrinogen for the production of the enzyme. The results showed that the best concentration of fibrinogen is 0.5% 

and the highest specific efficacy reached to 127.2 U/mg at concentration 0.5%, while the lowest specific efficacy 

was 18.5 U/mg when using 0.8% (fig 3). 

    

Figure 3: The optimum fibrinogen concentration for production. 

3.5. Determine the optimum inoculum size for production 

The results showed that the best inoculum size of the bacterial was 1% and the highest specific efficacy reached 

to 129.5 U/mg at a concentration of 1%, while the lowest specific efficacy was 47.4 U/mg when using 2.5 

(Figure 4) .This study agreed with [19] where the best size of the inoculum was 1%, noting that the specific 

effectiveness of the enzyme decreases when increasing the concentration of the inoculum size. 

 

Figure 4: The optimum inoculum size for production. 
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3.6. Determine the optimum temperature for enzyme production 

The bacteria were incubated at five different temperatures to find the best temperature for the production of the 

enzyme, adding 1000 μl of the bacterial inoculum to the enzyme production medium and incubated for 24 hours 

at pH number 7 with fixation of the sources of carbon and nitrogen and the optimal concentration of fibrinogen. 

The results showed that the best temperature was 37 ° C and the highest specific activity reached to 135.1 U/mg 

at a temperature of 37 °C, while the lowest specific activity reached to 129.2 U/mg at 25 ° C (Figure 5). The 

strain used in this study showed growth and ability to produce the enzyme, which indicates the wide range of 

temperature adaptability of the bacteria for enzyme production. The production of the enzyme from bacteria is 

affected by the temperature [21]. 

 
Figure 5: Optimum temperature for enzyme production. 

3.7. Determine the optimum pH for enzyme production 

The results showed that the best pH was 7and the highest specific activity reached to 136.2 U/mg at pH 7, while 

the lowest specific activity was 39.5 U/mg at pH 9 (Figure 6). The current study agreed with [22] where the best 

pH was 7 and with an observation that the specific activity of the enzyme decreased when the pH was increased 

to 9. The enzyme production from bacteria is affected by pH. The reason is that the pH has an effect on the 

growth of microorganisms through changes in the production or inhibition of proteins or the change in oxidation 

and reduction reactions inside the cell, as well as the production and consumption of energy important to the 

performance of all the vital functions of bacteria [23]. 

 

Figure 6: Optimum pH for enzyme production. 
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Conclusions 

As a conclusion, an improved production of the fibrinolytic enzyme can be obtained by dominating the culture 

conditions and by modifying the composition of media. The use of one factor at a time was useful in selecting 

the independent variables contributing towards enzyme production and determining maximum/minimum level of 

these distinct variables for more optimization. This study not only reduces the time but as well the cost of 

production of the fibrinolytic enzyme. 

Acknowledgement 

 The authors express their sincere appreciation to the Department of Applied Science Laboratories, University of 

Technology, Baghdad, Iraq for its help in some matters of the current study. No funding support by our college 

was provided. The authors are responsible for their funding support. 

Conflict of Interest 

 There are no conflicts of interest regarding the publication of this manuscript. 

References 

[1] A. M. Wendelboe and G. E. Raskob, “Global Burden of thrombosis: Epidemiologic aspects,” Circ. Res., vol. 

118, pp. 1340–1347, 2016. 

[2] O. Al-Asadi, M. Almusarhed, and H. Eldeeb, “Predictive risk factors of venous thromboembolism (VTE) 

associated with peripherally inserted central catheters (PICC) in ambulant solid cancer patients: retrospective 

single Centre cohort study,” Thromb. J., vol. 17, p. 1–7, 2019. 

[3] R. Gupta, Q. K. Beg, and P. Lorenz, “Bacterial alkaline proteases: molecular approaches and industrial 

applications,” Appl. Microbiol. Biotechnol., vol. 59, pp. 15–32, 2002. 

[4] Y. Peng, X. Yang, and Y. Zhang, “Microbial fibrinolytic enzymes: an overview of source, production, 

properties, and thrombolytic activity in vivo,” Appl. Microbiol. Biotechnol., vol. 69, pp. 126–132, 2005. 

[5] E. Kotb, “Purification and partial characterization of a chymotrypsin-like serine fibrinolytic enzyme from 

Bacillus amyloliquefaciens FCF-11 using corn husk as a novel substrate,” World J. Microbiol. Biotechnol., 

vol. 30, pp. 2071–2080, 2014. 

[6] P. Pachori, R. Gothalwal, and P. Gandhi, “Emergence of antibiotic resistance Pseudomonas aeruginosa in 

intensive care unit; a critical review,” Genes Dis., vol. 6, pp. 109–119, 2019. 

[7] N. Hussein and M. M. Khadum, “Evaluation of the biosynthesized silver nanoparticles’’ effects on biofilm 

formation,” Journal of Applied Sciences and Nanotechnology, vol. 1, pp. 23–31, 2021. 

[8] P. S. Stewart and J. W. Costerton, “Antibiotic resistance of bacteria in biofilms,” Lancet, vol. 358, pp. 135–

138, 2001. 

[9] C.-T. Chang, P.-M. Wang, Y.-F. Hung, and Y.-C. Chung, “Purification and biochemical properties of a 

fibrinolytic enzyme from Bacillus subtilis-fermented red bean,” Food Chem., vol. 133, pp. 1611–1617, 2012. 

[10] A.R.A. Sasmita, A. Sutrisno, E. Zubaidah, and A.K. Wardani, “Purification and characterization of a 

fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents,” In IOP 

conference series: earth and environmental science., vol. 131, pp. 10–41, 2018. 

[11] M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein 

utilizing the principle of protein-dye binding,” Anal. Biochem., vol. 72, pp. 248–254, 1976. 

[12] S. Pan, G. Chen, R. Wu, X. Cao, and Z. Liang, “Non-sterile submerged fermentation of fibrinolytic enzyme 

by marine Bacillus subtilis harboring antibacterial activity with starvation strategy,” Front. Microbiol., vol. 

10, pp. 10–25, 2019. 

[13] A. Sharma, and L. Shivlata, “Optimization of medium components for enhanced production of extracellular 

fibrinolytic protease from Citrobacter braakii,” Int.J.Curr.Microbiol. App.Sci., vol. 4, pp. 248-259,2015. 



Journal of Applied Sciences and Nanotechnology, Vol. 1, No. 2 (2021) 

 

65 

[14] Z. Che, X. Cao, G. Chen, and Z. Liang, “An effective combination of codon optimization, gene dosage, and 

process optimization for high-level production of fibrinolytic enzyme in Komagataella phaffii (Pichia 

pastoris),” BMC Biotechnol., vol. 20, pp. 1–13, 2020. 

[15] C. Wang, B. Ji, B. Li, and H. Ji, “Enzymatic properties and identification of a fibrinolytic serine protease 

purified from Bacillus subtilis DC33,” World J. Microbiol. Biotechnol., vol. 22, pp. 1365–1371, 2006. 

[16] A. Raj, N. Khess, N. Pujari, S. Bhattacharya, A. Das, and S. S. Rajan, “Enhancement of protease production 

by Pseudomonas aeruginosa isolated from dairy effluent sludge and determination of its fibrinolytic 

potential,” Asian Pac. J. Trop. Biomed., vol. 2, pp. 1845–1851, 2012. 

[17] Y. R. Abdel-Fattah, H. M. Saeed, Y. M. Gohar, and M. A. El-Baz, “Improved production of Pseudomonas 

aeruginosa uricase by optimization of process parameters through statistical experimental designs,” Process 

Biochem., vol. 40, pp. 1707–1714, 2005. 

[18] K. Jaber Kadhum Luti, “Mixture design of experiments for the optimization of carbon source for promoting 

undecylprodigiosin and actinorhodin production,” J. Pure Appl. Microbiol., vol. 12, pp. 1783–1793, 2018. 

[19] S. D. Chandrasekaran et al., “Exploring the in vitro thrombolytic activity of nattokinase from a new strain 

Pseudomonas aeruginosa CMSS,” Jundishapur J. Microbiol., vol. 8, pp. 35–67, 2015. 

[20] S. B. Jhample, P. K. Bhagwat, and P. B. Dandge, “Statistical media optimization for enhanced production of 

fibrinolytic enzyme from newly isolated Proteus penneri SP-20,” Biocatal. Agric. Biotechnol., vol. 4, pp. 

370–379, 2015. 

[21] R. G. Gad, “Studies on a fibrinolytic enzyme from Bacillus species,” Indian J. Sci. Technol., vol. 7, pp. 

1632–1642, 2014. 

[22] C. Kim, M. Bushlaibi, R. Alrefaei, E. Ndegwa, P. Kaseloo, and C. Wynn, “Influence of prior pH and 

thermal stresses on thermal tolerance of foodborne pathogens,” Food Sci. Nutr., vol. 7, pp. 2033–2042, 2019. 

[23] S. DeBritto et al., “Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas 

aeruginosa and its dye and agrochemical properties,” Sci. Rep., vol. 10, pp. 1–12, 2020. 

 


