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Abstract 

In this paper, Gas sensors for ethanol and methanol were created 

utilizing porous silicon (PSi). n-type silicon was employed for all PSi 

samples, photo-electrochemical etching technique (PECE) was used to 

prepare porous surface. The intensity of the three etchings current 

densities was 12, 24 and 30 mA / cm
2
, with 40% hydrofluoric acid 

concentration (HF) and a time of etching 10 minutes. Porous silicon 

(100) has been strictly studied by the structure and formation of surface 

bonding of the PSi layer; the structural properties, morphological 

characteristics, pore diameter, and roughness were described using X-

ray diffraction (XRD), atomic force microscopy (AFM) and scanning 

electron microscopy (SEM). All PSi samples were applied as a sensor 

for ethanol and methanol at room temperature. The results showed that 

the best sensitivity of PSi was to ethanol gas compared to methane 

under the same used conditions at etching current density 30mA/cm2, 

reaching about 1.809 at a concentration of 500 ppm. From these 

results, the PSi layers act as high-quality, low-cost gas sensors. It can 

be used as a replacement for expensive material that is used as gas 

sensors, which operate at low temperatures, including room 

temperature. The interest in this material is due to study the effect of 

extremely high surface to volume ratio (increasing surface area), and 

easy manufactured and compatibility with modern silicon 

microelectronics manufacturing technologies. 

  
DOI: 10.53293/jasn.2021.3834.1048, Department of Applied Sciences, University of Technology 

This is an open access article under the CC BY 4.0 License.  

1. Introduction 

Porous silicon (PSi) has been extensively researched since the discovery of its effective photoluminescence in 

the visible light range. By combining the PSi structure's large surface area and unique optical and electrical 

properties with a semiconductor nanostructure, it is possible to produce low-cost light-emitting materials, which 

is economically useful and important nowadays, and it serves as a good substrate for many fabrication 

techniques [1]. PSi may be considered as a silicon crystal with a network of voids in it. Because of the nanosized 

“gaps” in the silicon bulk, a sponge-like structure of pores and channels is formed, surrounded by a skeleton of 

crystal-line silicon nanowires. [2]. Where the PSi surface seems to be a fragile spongy structure. Because the 

cross-section seems to be a spongy skeleton, the” moniker” PSi is utilized [3].  Usually, it is traditionally 

prepared by Anodize silicone substrates (Anodize method) Depending on the design parameters (current density, 
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electrolyte concentration, etching Time, and substrate type), silicon crystals are produced in this manner can give 

varied diameters of units ranging from nanometers to tens of micrometers. PSi has a property, namely the ability 

to adjust porosity, which makes it appropriate for a wide range of gas sensor applications [4]. So it can be used 

for wide application areas including Light-emitting diode, dielectric waveguides, chemical, and biological 

sensors, solar cell (antireflection coating), field emission device, and photo-detector [5] Furthermore, PSi is a 

frequently utilized and intriguing material for its nanostructures [6]. It features a large surface area with a 

customizable shape and strong light interaction. This results in a fantastic PS platform for the construction of gas 

sensors, biosensors, and optical devices [7, 8]. 

 There is a rising interest in creating efficient and cost-effective gas sensors for monitoring gas leaks into the 

atmosphere [9]. The fascination in this material stems mostly from its extraordinarily high surface-to-volume 

ratio, simplicity of creation, and compatibility with contemporary silicon microelectronics production 

procedures. [10, 11]. In this study is to a gas sensor for ethanol and methanol was conducted on n-type silicon 

chips using a photo electrochemical etching method under the change of the drill current density, and the 

sensitivity of the PSi sensor was based on the surface nanowire structure and the size of the nanopore.  

2. Experimental Procedure 

An n-type (100) oriented silicon wafer with thickness 580±0.25 µm and resistivity of 1.5-4 Ω.cm was used to 

make the Psi layer. For the porous of preparing the needed etching solution at a concentration of 40% HF as well 

as electrochemical cell made of Teflon, 48% as hydrofluoric acid, Scharlau, Spain, has been diluted and utilized 

with ethanol of high purity (99.9%). In addition, the silicon wafers were cut into small pieces approximately 2.5 

cm x 2.5 cm in size, after that ultrasonically cleaned for 5 min in ethanol for removing any contamination on the 

surface. Furthermore, the photo-electrochemical etching (PECE) approach is used for creating a homogeneous 

PS  layer on the front surface related to the n-Si wafer. 

PECE consists of a halogen lamp, power supply for the current source, two electrodes, and an ammeter for 

measuring current, also a gold grid serving as the cathode as well as a Si wafer serving as the anode. Also, such 

samples have been etched into electrolytes consisting of HF: Ethanol solution with various current densities 

J=12, 24, and 30mA/cm
2
 the schematic diagram related to the PECE setup is shown in Figure (1). (AFM, SPM 

AA3000. Angstrom Advanced Inc., USA AFM contact mode); AFM instrument was achieved in the department 

of Chemical Science- Baghdad University) has been used to examine the PSi surface roughness and pore 

diameter with nano range, also an XRD spectrometer (XRD, Shimadzu) is utilized for collecting the XRD 

patterns regarding bulk-silicon as well as PSi surface layers. (SEM, Inspect s50 FEI company made Holland, test 

was conducted in the Applied Science Department /University of Technology/ Iraq.) Will be used to investigate 

the properties of PS morphology The Experimental section must precede the Results and discussion. A concise 

and accurate description of methods enabling their reproduction by others is necessary. Sections can be divided 

into subsections in a sensible way so that the text would not be fragmented into many small paragraphs having a 

few lines. Experimental part should be Times New Roman, justified, regular; font size: 11 single. If you have 

any figures or tables in this section, please use the same format that will be mentioned in the “Results and 

discussion” part. If you have equations, please use the format and manner mentioned in the “Theoretical Part” 

above. 
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Figure 1: A schematic diagram of PECE set up [12]. 

Figure (2) shows a homemade gas sensor, and the measurements were carried out in a 2.5-liter glass desiccator 

chamber. A heater heated the substrate, and its temperature was adjusted by a variable transformer (variac) 

linked across a heater. The resistance change was measured using the Mable application, which was linked to a 

precision millimetre (Keithley 616) through a personal computer [13]. During the experiment, a rotary bump 

uses to refresh the chamber. All sensor measurements and the process of etching have been conducted at a room 

temperature.  

 

Figure 2: Experimental set-up of gas sensor [13]. 

3. Results and Discussion 

Figure (3) shows the XRD pattern of c-Si and PSi samples at etching current densities about 12 and 30mA/cm
2
 

respectively with an etching time of 10 min. It was demonstrated that the Si layers still crystallized at orientation 

(100) for all PSi samples. In addition, the layers of PSi remain crystalline in-plane (100) with diffraction angles 

of roughly (2ϴ) =69.2 °, 69.15 °, and 69.461 ° for bulk-Silicon, PSi at J=12, J=30mA/cm
2
 correspondingly, and 

the PSi layer remains crystalline, yet is shifted slightly to small diffraction angle. These findings are due to the 

strain effect, which produces a little increase in the lattice parameter and, as a result, shifts the PSi peak to a 

small diffraction angle [14]. As the crystal size is decreased to the nanometric scale, the diffraction peak 

broadens, and width or FWHM of the peak is directly proportional to the size of the nanocrystalline domain [15]. 
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Figure 3: Illustrates the XRD diffraction patterns of the a) PSi and bulk silicon at various etching current 

densities of b) 12 c) 30 mA / cm
2
, HFC of 40%, and etching time 10 min. 

The AFM results were presented in Figure (4), with a Nano-metric scale. There were shown the two dimensions 

structure image of the PSi layer. From these images, the PSi structure can be observed by randomly distributes 

crystal silicon with different pore diameters on the entire surface depending on etching current density. As a 

result, etching time and current density may be employed to alter the size and form of the final pore structures. 

[16,17]. The average pore diameter was mention in Table 1 for PSi at J=12 and 30 mA/cm
2
.and there is shows 

that the pore diameter and roughness of the surface increase with the increasing of etching current densities 
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Figure 4: 2-D AFM images related to the samples of PSi at various etching current densities (a) 12 and (b) 30 

mA/cm
2
, HFc 40%, and etching time 10 min. 

 

 

Table 1: Summary results of AFM, average diameter, and roughness at different etching current densities. 

 

The SEM test was used to analyze the surface morphology of PSi samples. Figure (5 a, and b) shows the SEM 

image of the PSi surface at etching current densities J= 12, and 30 mA/cm
2
 respectively. It indicates the regular 

pore, the small pores begin to form on the Si-layer during low current density at (J=12) mA / cm
2
 figure(5a), 

while with etching current density increasing the pore diameter increased,   the greater diameter of the pore was 

obtained with thinnest walls that separated neighbor pores shown in figure (5b)  this attributed to effective 

dissolution of Silicon at the wall of pores that lead to increasing of pore size, and consequently minimized the 

distance of inter-pore “wall thickness”. This is due to the rapid dissolution on the silicon surface by HF solution 

which attacked directly followed via oxidations [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J (mA/cm
2
) Ave. Diameter (nm) Ave.Roughness (nm) 

12 23.05 2.44 

30 26.23 8.63 

(a) (b) 
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Figure 5: SEM image of PSi samples at different etching current densities (a) 12 and (b) 30 mA/cm
2
, etching 

time 10 min, and HFc 40%. 

The sensing characteristics of porous silicon samples for the ethanol and methanol gas were shown in Figure 6. 

Sensor sensitivity (Sg) is defined as Ra / Rg [13], where Ra is the sensor's electrical resistance in air and Rg is its 

resistance in mixed gas and air. Figure (6a and b) shows the sensitivity of samples that were prepared with 

etching current density J = 12, 24, 30 mA/cm
2
,40% HFc etched solution and timed etching about 10 minutes in 

the presence of 500 ppm methanol and ethanol, respectively. The sensitivity was determined by calculating the 

sample's resistance with a constant voltage. As it turns out, when the sample is exposed to ethanol or methanol, 

the sensitivity improves. The best sensitivity to ethanol was about (1.809) at current density J=30mA/cm
2
, while 

the best sensitivity of methanol was about (0.3808) at J=12 mA /cm
2
. The long reaction time is due to the large 

surface area and the presence of nanopores, which take long periods to achieve the equilibrium adsorption state. 

This interpretation is consistent with the AFM results presented in Table 1, which show that the sample made 

with J= 30mA/cm
2
 most observable porous structures [19,20].  

Greater porosity means a larger surface area, and thus a larger reactive surface for the gas sensor ethanol. It was 

illustrated in Fig. 6 the gas sensitivity increases after injection of ethanol gas into the reaction chamber and 

reaches the saturation level, then decreases when the sample is exposed to air. The gas response was found to be 

Ra / Rg = 1.809, 1.4209, and 1.3132 at an etching current density of J= 12, 24, and 30mA / cm
2
, where Rg is the 

resistance when the sample is exposed to ethanol. The higher response was at J=30 compared with other samples 

at 12 and 24 mA / cm
2
. The higher sensitivity of the porous silicon film prepared with PECE technology may be 

attributed to the optimal number of uniform pores on the surface, larger surface area, greater surface roughness, 

and the greater ethanol oxidation rate, this results obeyed with SEM and AFM results. The effect of changing the 

etching current densities in making porous silicon was clear on the pore diameter and surface roughness, and this 

is consistent with the results of the AFM examination, where the pore roughness was equal to (2.44 nm) and the 

pore diameter was equal to (23.05nm) at J = 12 mA/cm
2
, while at J = 30 mA/cm

2
 The surface roughness is (8.63 

nm) and the pore diameter is (26.23 nm). This is also consistent with the results of the SEM examination, where 

the higher the etching current density, the greater the pore diameter, the higher the surface roughness and the 

smaller the pore wall, and this leads to an increase in the surface area exposed to the gas and an increase in the 

energy gap on the surface [6,7]. The lowest ethanol gas response was also obtained for Ra / Rg =1.313257 at 

etching current density of 12 mA / cm
2
.but at ethanol gas the higher sensitivity was (0.380801) at etching current 

density J=12mA/cm
2
 then at J= (24mA/cm

2
) about Ra / Rg= (0.161195093) and the lowest was at J=30 mA/cm

2
 

with Ra / Rg= (0.12389692). 

 

 

 

 

(a) (b) 
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Figure 6: Typical gas sensor responses (Ra / Rg) to a PS with different etching current densities) 12, 24, 30 

mA/cm
2
 sensor for (a)ethanol and (b)methanol gases at an operating temperature of 60°C. 

Figure (7) illustrates the variation in response time as a function of the sensitivity of different etching current 

densities. Response time represents the time it takes for the sample to interact with the gas, and the recovery time 

represents the time it takes for the sample to return to its normal state, ie the state of the sample before pumping 

the gas. Obviously, the response time increases with time and has a higher value of 31s at a current density of 30 

mA / cm
2
 and then decreases again. The large response time and recovery times may be due to the high gas 

absorption rate and gas absorption agreement [21]. The variation in response and recovery time for the two gases 

used is because the melting and boiling temperatures of ethanol are relatively higher than that of ethane. After 

all, ethanol can form strong bonds such as hydrogen bonds. Among the molecules that ethane cannot do. Table 

(2) shown the recovery and response times for the PSi samples. 

Table 2: displays the modified samples' recovery and response times. 

 
J(mA/cm2) GAS Ra(KOHM) Rg(KOHM) Sensitivity RESPONSE 

TIME(sec) 

RECOVER 

TIME(sec) 

12 ethanol 4.23 3.211 1.3132 10 23 

24  7.266 5.1135 1.4209 17 29 

30  1.2446 0.688 1.8090 23 45 

12 methanol 212.856 558.969 0.380801082 23 35 

24  32.87316 203.934 0.161195093 20 41 

30  16.0392 129.456 0.123896923 16 31 
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Figure 7: Response and recovery time versus start time for (a) ethanol (b) methanol 

4. Conclusions 

The Conclusions section contains a brief analysis of principal findings and significance of the work. The 

Conclusions must not be a re-worded abstract. Unlike an abstract, the Conclusions are primarily determined to 

those who read the whole paper. Conclusions should be Times New Roman, justified, regular; font size: 11 

single. In summary, the sequential preparation method with different etching current densities was successfully 

used as a gas sensor. The results obtained indicated that the structural properties of the PSi layer depend on the 

etching time, surface roughness, layer thickness, etching current density, and pore diameter. The SEM 

examination indicates that the pore diameter of the PS layer increases with increasing etching current density, 

with the pores appearing sponge-like. Gas sensitivity to ethanol for all samples PSi increases with changing 

samples, this means that the best performance of the sensor is when the sensor is operating at room temperature 

and thus ensures the adequate life span of the sensor and does not require more electrical energy for the process. 

This makes the sensor economical and ideal. It was observed that the highest response was at the current density 

of 30 mA / cm
2
, the optimum sensitivity of the PSi-based gas sensor is 1.8090 at an ethanol concentration of 500 

ppm at room temperature. The impressive result also shows response time (23 seconds), recovery time (45 

seconds). 
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