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Abstract 

The idea of generalizing quasi injective by employing a new term is 

introduced in this paper. The introduction of principally self-injective 

modules, which are principally self-injective modules. A number of 

characteristics and characterizations of such modules have been 

established. In addition, the idea of strongly mainly self-pure sub-

modules was added, which is similar to strongly primarily self-

injective sub-modules. Some characteristics of injective, quasi-

injective, principally self-injective, principally injective, absolutely 

self-pure, absolutely pure, and finitely R-injective modules being 

lengthened to strongly principally self-injective modules. So, in the 

present work, some properties are added to the concept in a manner 

similar to the absolutely self-neatness. The fundamental features of 

these concepts and their interrelationships are linked to the conceptions 

of some rings. (Von Neumann) regular, left SF-ring, and left pp-ring 

rings are described via such concept. For instance, the homomorphic 

picture of every principally injective module be strongly principally 

self-injective if R being left pp-ring, and another example for a 

commutative ring R of every strongly principally self-injective module 

be flat if R being (Von Neumann) regular. Also, a ring R be (Von 

Neumann) regular if and only if each R-module being strongly 

principally self-injective module.
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This is an open access article under the CC BY 4.0 License.  
1. Introduction 

A module M is injective which is stated by M. F. Hamid [1], that is equal to Baer condition [2], which states that 

a module A is injective if each R-homomorphism f: I  → A can be stretched to an R-homomorphism h: R → 

A.for each left ideal I of R. The concept of injective modules has been extensively researched, and several 

generalizations have been offered. For example, R. E. Johnson and E. T. Wong developed quasi injective 

modules as a generalization of injective modules [3], while Nicholson introduced principal injective as a 

generalization of injective modules in 1995 [4]. A module M is said to be quasi injective in [5] and [6]. From the 

other side, L. Fuchs in 1969 [7] verified that a module M is quasi injective if and only if for each left ideal I of R, 

and each R-homomorphism α: I → M, with ker α ∈ Ω(M), where the ker α means kernel of the map α, (Ω (M) = 

set of the whole left ideals I of R, then I ⊇ ann(m) for certain m ∈ M, where the ann(m) means annihilator (m)), 

there is an R-homomorphism γ: R → M  lengthening α. That's similar to the Baer state for the injective modules. 

Journal of Applied Sciences and Nanotechnology 

 

mailto:as.18.21@grad.uotechnology.edu.iq


Journal of Applied Sciences and Nanotechnology, Vol. 2, No. 2 (2022) 

 

133 

The minimum (quasi) injective module containing M as a sub-module is named the (quasi) injective envelope of 

M by [2, 5]. 

In what follows, R denotes an associative ring with identity, and all modules are left unitary R-modules. There is 
another concept that is also of interest in [1], which is of absolutely self-pure modules. Consequently, 

every absolutely pure module is finitely R-injective [8], and the absolute self-purity idea generalizes the quasi-

injectivity, finite R-injectivity, and absolute purity [5]. The purpose of this study is to present a concept that sits 

between absolute self-purity and principal self injectivity and generalize this concept in a way that is similar to 

absolutely self-neatness [9]. A module M is called strongly principally self-injective (denoted sps-injective) 

module if it is strongly principally self-pure in each module containing it as a sub-module. 

The main problem that was raised is. We do not know whether direct sum two principally self-injective modules 

are direct sum or not. In order to find a solution to this problem, we presented a sub-concept paving the way to 

present our main concept. A sub-module M of an R-module N is called strongly principally self-pure sub-

module of N  (Denoted M ≤ 
sps−p

N) when the subsequent being satisfied: For each principal left ideal I of R as 

well as each R-homeomorphism α: I → M, with ker α ∈  ̅(M), there's also an R-homomorphism γ : R → N 

causing the following commutative diagram 1.  

 
Diagram 1: Strongly principally self-pure. 

After that, there's an R-homomorphism β : R → M causing the higher triangle to be commutative. Some 

examples of this concept are provided.  Also, some properties of strongly principally self-pure sub-modules are 

added, among them, it is proved that a strongly principally self-pure sub-module of a module is transitive. 

The main goal of this study is to introduce strongly principally self-injective modules, which are located between 

absolutely self-pure modules and principally self-injective modules. Through this concept, we proved that the 

direct sum of two strongly principally self-injective modules are strongly principally self-injective modules. As 

well, some rings are characterized by using strongly principally self-injective modules and strongly principally 

pure sub-modules. Employing such idea, (Von Neumann) regular as well as left pp-ring is characterized. Where 

these rings were formerly distinguished by multiple concepts, for example, rings were distinguished as (Von 

Neumann) regular rings by (co)pure see [10-12]. Genetic algorithms are studied in cryptography see [13], which 

is one of the important algebraic applications. Interestingly, some rings were distinguished as pp-ring rings by p-

injective module see [14-17]. Where we proved every module is a sps-injective module if and only if a ring R be 

(Von Neumann) regular and R be left pp-ring if and only if the homomorphic image of any absolutely pure 

module is sps-injective module. 

2. Methodology of Research 

In this section, some of the necessary concepts, which are related to the present work, are reviewed. For 

example, injective, quasi injective and other concepts are related to the current work: 

2.1. Definition [2] A module M is called injective if for every R-monomorphism γ: A → B of modules and every 

R-homomorphism α: A → M, there is an R-homomorphism β: B → M, then α = γ ◦ β. That's similar to the Baer 

state [2] and the module A being injective if and only if, for each left ideal I of R, each R-homomorphism f: I → 

A can be lengthened to an R-homomorphism h: R → A. 

2.2. Definition [5, 6] A module M is called quasi injective when for each sub-module N ⊆ M and each R-

homomorphism α: N → M, can be lengthened to a M endomorphism. 



Journal of Applied Sciences and Nanotechnology, Vol. 2, No. 2 (2022) 

 

134 

2.3. Definition [2] and [5] The minimum (quasi) injective module containing M as a sub-module is called the 

(quasi) injective M envelope. 

2.4. Definition [1, 17] A module M is said to be principally injective (denoted p-injective) when every R-

homomorphism from an R principal left ideal to M can be extended to an R-homomorphism from R → M. It's 

obvious that each injective module being principally injective as well as quasi injective, but the opposite isn't 

correct. 

2.5. Definition [18] A sub-module M of a module N is said to be pure sub-module when for the following 

commutative diagram 2, with a finitely generated sub-module I of a free module. 

 
Diagram 2: Pure sub-module. 

There is a R-homomorphism F → M causing the higher triangle be commutative. 

 

2.6. Definition [19, 20] A module M is called absolutely pure when it's pure in every module that contains it as 

a sub-module. 

 

2.7. Definition [21] A module M is said to be absolutely self-pure when for each finitely created left ideal I of R 

as well as each R-homomorphism α: I → M with ker α ∈  ̅(M), there is an extension γ: R → M of α. 

 

2.8. Definition [8] A module M  is called finitely R-injective when each R-homomorphism from a finitely 

created left ideal of R → M can be lengthened to an R-homomorphism R → M. Consequently, every absolutely 

pure module is finitely R-injective. The absolute self-purity idea generalizes the finite R-injectivity, quasi 

infectiveness, and absolute purity. 

2.9. Definition [9] A module M is called neat in N, precisely for the following commutative diagram 3. 

 
Diagram 3: Neat module. 

Where, I be the greatest left ideal of R, and there's an R-homomorphism R → M that extends α. 

 

2.10. Definition [9] A module M is called absolutely self-neat when for each R-homomorphism α: I → M, 

where I is the greatest left ideal of R and ker α ∈  ̅(M), there's an R-homomorphism γ: R → M that extends α. 

2.11. Definition A sub-module M of a module N is called strongly principally self-pure of N (Denoted M ≤ 
sps−p

N) when the subsequent being correct: For each principal left ideal I of R as well as each R-homeomorphism 

α : I → M, with ker α ∈  ̅(M), when there's also an R-homomorphism γ: R → N making the following 

commutative diagram 4. 
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Diagram 4: Strongly principally self-pure module. 

After that, there's an R-homomorphism β : R → M causing the higher triangle be commutative. 

2.12. Definition A module M is called strongly principally self-injective (denoted sps-injective) when being 

strongly principally self-pure sub-module in each R-module containing it. 

3. Main Results 

In this section, the basic properties of strongly principally self-pure sub-module and strongly principally self-

injective module by some new results are proved, and some examples of these two concepts are given. 

The following result describes a strongly principally self-pure sub-module. 

3.1. Proposition Let A ⊆  B ⊆  C are modules. 

(1)  If A ≤
sps−p

 B and B ≤
sps−p

 C, then A ≤
sps−p

 C. 

(2)  If A ≤
sps−p

 C, then A ≤
sps−p

 B. 

Proof. 1. Consider the following commutative diagram 5. 

 
Diagram 5: A is sps-pure sub-module in C. 

Where, I represent the principal left ideal of R, and α represents the R-homomorphism, with ker α ∈  ̅(A), and Ƴ: 

R → C is an R-homomorphism making the diagram commutative. One can regard α as R-homomorphism I → B 

for getting the following commutative diagram 6. 

 
Diagram 6: B is sps-pure sub-module in C. 

As B ≤
 sps−p

 C, there's an R-homomorphism Ƴ: R → B of α, therefore the following commutative diagram 7: 

 
Diagram 7: A is sps-pure sub-module in B. 
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And since A ≤
 sps−p

 B, there's an R-homomorphism β: R → A that extends α. 

2.  Take into consideration the following commutative diagram 8. 

 
Diagram 8: A is sps-pure sub-module. 

Since A ≤
 sps−p

 C, there's an R-homomorphism β: R → A that extends α.                                                                        

3.2. Examples 

1) Any pure sub-module of a module is strongly principally self-pure but not the other way around, and 

because of any strongly principally self-pure in it is injective envelope, but not pure. 

2) Any self-pure sub-module of an R-module being strongly principally self-pure.                                                                        

The following result proves that the strongly principally self-pure sub-module is a form of injective module. 

3.3. Proposition An R-module N is strongly principally self-injective when for every principal left ideal I of R, 

as well as every R-homomorphism α: I → N, with ker α ∈  ̅(N), there's an R-homomorphism R → M that 

extends α. 

Proof. For any R-homomorphism α: I → N as above, there's an R-homomorphism γ: R → Q(N) making the 

following commutative diagram 9: 

 
Diagram 9: N is sps-pure sub-module in Q(N). 

But, N is strongly principally self-injective if and only if it's strongly principally self-pure in Q(N), if and only if, 

there's an R-homomorphism β:  R → N that extends α.                                                                                           ∎ 

3.4. Examples 

1) Any (quasi) injective module is clearly sps-injective module. 

2) Every p-injective module is clearly sps-injective module. 

 

3.5. Proposition Each sps-pure sub-module of an sps-injective module being once more sps-injective. 

Proof. Take into consideration the following commutative diagram 10. 
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Diagram 10: N is sps-injective module. 

When N be sps-injective, where ker α ∈  ̅ (M), then there is an R-homomorphism Ƴ:  R → N causing the 

drawing be commutative. If M ≤
 sps−p

 N, there's an R-homomorphism R → M causing the higher triangle be 

commutative and extending α.                                                                                                                                                                                                                                                                                          

3.6. Examples 

1) Every absolutely (self) pure module is sps-injective. 

2) The  -modules       are sps-injective module but not a p-injective. 

The subsequent corollary considers the preceding proposition. 

3.7. Corollary Each direct summand of a sps-injective module is once more sps-injective.  

Property of strongly principally self-infectiveness is preserved when taking the finite direct sums of a module 

property of strongly principally self-infectiveness. This can be proved by the following Theorem: 

3.8. Theorem A module A being strongly principally self-injective module if and only if A ⊕ A be strongly 

principally self-injective module. 

Proof. If A ⊕ A is strongly principally self-injective module, then A is strongly principally self-injective 

module, since it is the result of a direct summand A ⊕ A. Conversely, if A is strongly principally self-injective, 

then for any  R-homomorphism  α  : I  →  A ⊕ A,  where  I is  a  principal  left ideal of R, and ker α ∈   ̅(A ⊕ 

A), we have ker α ⊇      
 ann(xi, yi) =      

 ann(xi) ∩      
 ann(yi),  for some xi, yi ∈ A,  i =  1, ..., I. This 

means that ker α ∈  ̅(A).   Having, α =  α1 ⊕ α2,  where  α1  and  α2  are  obtained  by  following  α  as  a  result 

of the natural projections of A ⊕ A onto A ⊕ 0 and 0 ⊕ A, respectively, we see that every of ker α1,  and ker α2,  

contains ker α.  So,  they  must  be  in  ̅(A).  by strongly principally self-infectiveness of A, there are R-

homomorphism β1 and β1 : R → A extending α1 and α2,  respectively.  Now, β1 ⊕ β2 is the desired extension of 

α.                                   ∎                                                                                                                                                                                               

Recall that M of a module N is called principally self-pure sub-module of N [23] (denoted A ≤
 ps−p

 B) when the 

subsequent be correct: For each principal left ideal I of R as well as each R-homomorphism α: I → M, with ker α 

⊇ ann(m) for certain m ∈ M, there's also an R-homomorphism Ƴ: R → N making the following commutative 

diagram 11. 

 
Diagram 11: Principally self-pure sub-module. 

After that, there's an R-homomorphism β : R → M, causing the higher triangle be commutative. 

Also, a module M is called principally self-injective [23] (denoted ps-injective) when for every principal left 

ideal I of R as well as every R-homomorphism α: I → M, with ker α ⊇ ann(m) for certain m ∈ M, there's an R-

homomorphism R → M that extends α. 
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3.10. Remarks 

1. Every sps-pure sub-module is a ps-pure sub-module, but the opposite is not necessarily true. 

2. Every sps-injective module is a ps-injective module, but the opposite is not necessarily true. 

3. When a module M be strongly principally self-pure in certain quasi injective module by Proposition 2.3, it 

has to be sps-pure in its quasi-injective envelope Q(M). When M is a sub-module of module N, the Q(M) ≤
 

sps−p

 Q(M), and one has to pose, by Proposition 2.3, that M  ≤
 sps−p

 N. From the above theorem proof, a 

module being sps-injective, if and only if it's strongly principally self-pure in certain quasi injective module 

if and only if it's strongly principally self-pure in its quasi-injective envelope. 

The following figure 1, shows the relationship among all these concepts, (quasi) injective modules with ps-

injective, absolutely (self) pure, principally injective, and sps-injective. 

 

Figure 1: Strongly principally self-injective modules. 

The above figure 1, states that the concept of sps-injective is generalization of injective, quasi-injective, 

absolutely self-pure, and principally injective modules. It also shows that the concept of sps-injective is 

generalized by the ps-injective module. 

4. Characterization of Some Rings 

In this section, some new results of the characterization of some rings by sps-injective are shown. Where, every 

module being sps-injective if R is (Von Neumann) regular, the homomorphic image of each is absolutely pure 

module being sps-injective if and only if R is left pp-ring, and for a commutative ring R, each sps-injective 

module be flat equivalent to a ring R that being (Von Neumann) regular. 

 

By recalling that a ring R is called left principally projective ring (denoted left pp-ring) [5] when every of its 

principal left-ideals being projective. 

One can characterize the left pp-rings in the following theorem after the Lemma. 

4.1. Lemma [21] A left ideal I in a ring R being projective if and only if for each epimorphism M →    from an 

injective module M,  and each R-homomorphism R → M,  with ker α ∈  ̅(M) can be lifted to an R-

homomorphism I → M. 

4.2. Theorem A ring R is a left pp-ring if and only if the homomorphic image of any injective module is sps-

injective. 

Proof.  (⇒) Let M be injective module and let β : M → N is each epimorphism, one will verify that N being sps-

injective. Each principal left ideal I of R being projective, the inclusion map is ι : I → R as well as Ƴ : I → N. Via 

supposing, a ring R being left pp-ring. That involves that there's an R-homomorphism α: R → M that can be 

raised to an R-homomorphism δ : R → N, consequently, there's δ that extends γ. Therefore, N is sps-injective. 

For (⇐), One will verify each principal left ideal of R be projective. Take into consideration the following 

commutative diagram 12. 
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Diagram 12: Homomorphic image of the N injective module. 

Where, I represents a principal left ideal of R, and the inclusion map is ι : I → R s well as Ƴ : I → N of any R-

homomorphism with ker α ∈  ̅ (N) and β : M → N,  is an epimorphism from an injective module M. By 

assumption, N is sps-injective. That involves that there's an R-homomorphism δ : R → N that extends γ.  But, R 

being projective, consequently, there's an R-homomorphism α : R → M that lifts δ. 

 
Diagram 13: A ring R is a left pp-ring. 

So, one has βαι = δι = γ, and I is projective via Lemma 3.1.                                                                                     

∎ 

A ring R is called (Von Neumann) regular (see [24, 26]) if each principal left ideal of R being a straight 

summand.  Over a (Von Neumann) regular ring, every module is sps-injective.  Also, it's correct in the opposite 

direction. 

The following theorem proved that every module is a sps-injective over (Von Neumann) regular rings. 

4.3. Theorem A ring R is (Von Neumann) regular if and only if each module is a sps-injective. 

Proof. (⇒) Every module is absolutely self-pure modules [5], therefore it's sps-injective. 

(⇐) Consider the following commutative diagram 13. 

 

Diagram 13: A module is sps-injective. 

Let I represents a principal left ideal of R, also the identity map of I to extend by R-homomorphism α : I → I ⊕ 

R is described via x ↦ (x, 0). One will prove this map is well defined, let x ∈ I, x ↦ (x, 0),  ann(x) = 0, ann(x) ≤ 

ann(x, 0), therefore α is well defined. By assumption, I ⊕ R is sps-injective, hence there is an R-homomorphism 

β: R → I ⊕ R extending β, with ker α ∈  ̅(I ⊕ R). There is a β by the projection π: I ⊕ R → I to extend the 

identity map I → I, and as proof I is the direct summand in R, this was proven by Corollary 2.8.                                                      
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Recall that a ring R is called left SF-ring [2] when each simple left module being flat. One recognizes that a left 

module A is called flat if and only if    is injective [27, Proposition 3.54, p.136]. 

In the following theorem, the equivalence (1)   (2) is proved if R is commutative. 

4.4. Theorem For a commutative ring R, the following are equivalent: 

(1)  R represents the (Von Neumann) regular ring. 

(2)  Each sps-injective module being flat. 

Proof. (1) ⇒ (2) is trivial. For (2) ⇐ (1), one will verify that R being (Von Neumann) regular. Each easy module 

is a quasi-injective [2]. Therefore, each easy module is sps-injective, also each sps-injective module being flat 

via the supposition. Consequently, R represents a SF-ring. Thus, R represents the (Von Neumann) regular [6, 

Theorem 3.16]. 

4.5. Example In [23], there's an example of 1-injective ring R (= p-injective) that isn't 2-injective; this means 

there's a left ideal I of R, created via 2-elements as well as an R-homomorphism I → R, without extending to 

R → R. It is clear that this is an instance of a sps-injective module but it is not absolutely self-pure. 

5. Applications About Modules 

Modules theory has been used in telecommunications applications, provides space-time coding, and the design 

of signal constellations for multi-antenna radio transmission. Therefore, the group representation theory is based 

on module theory, it is necessary to mention everything that is based on it. For example, the usage of modules 

across an algebraic number field aids the signal constellation design in telecommunications engineering and 

theoretical physics. The representation theory of groups and modules are inextricably linked. They are also a key 

concept in commutative and homological algebra, and they're utilized a lot in algebraic geometry and algebraic 

topology. 

 

6. Conclusions 

The idea of strongly primarily self-injective modules was presented in this paper, which lies in between absolute 

self-purity and principal self-injectivity. R is von Neumann regular only if every module being primarily self-

injective, and R is pp-ring only when the homomorphic image of every completely pure module is principally 

self-injective. The idea of a sub-module that is strongly principally self-pure sub-module was proposed. It was 

established that the relationships between principally self-pure sub-modules are transitive as the relationships 

between strongly principally self-pure sub-modules. This is similar to what is found in a pure sub-module. 
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