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Abstract 

Extensive studies were devoted to iron oxide nanoparticles (IONPs), in 

recent years. Iron oxides are chemical compounds that have various 

polymorphic forms, including maghemite (γ-Fe2O3), magnetite 

(Fe3O4), and Hematite (α-Fe2O3). Among them, the most important 

studied is magnetite (Fe3O4) due to its low cost and low toxicity, 

besides its unique magnetic and physicochemical characteristics which 

qualified it for use in various applications such as biomedical and 

technological applications. Magnetic particles should be small and 

have a narrow size distribution for these applications. The smaller the 

size of the iron oxide particles, the greater their reactivity and 

biodegradability. In this review, we display summary information of 

magnetite (Fe3O4) nanoparticles in terms of structure, characteristics, 

and preparation methods.   Because the prepared strategy has been 

proven to be critical for preferable control of the particle size and 

shape, in addition, to producing monodispersed magnetite (Fe3O4) 

nanoparticles with a direct effect on their characteristics and 

applications, special attention will be placed on chemical preparation 

techniques including Hydrothermal synthesis, Co-precipitation 

technique, Sol-Gel process, and thermal decomposition method. This 

review offers specific information for selecting appropriate synthetic 

methods for obtaining appropriate sizes, shapes, and magnetic 

properties of magnetite (Fe3O4) nanoparticles (NPs) for target 

applications.

  
DOI: 10.53293/jasn.2022.5179.1178, Department of Applied Sciences, University of Technology 
This is an open access article under the CC BY 4.0 License.  

1. Introduction 

When compared to macro-sized particles, nanoparticles (NPs) have a higher surface area. At the atomic level (1–

100) nm, NPs are referred to as controlled or manipulated particles. They exhibit size-related characteristics that 

vary significantly from bulk materials. When compared to similar materials in bulk dimensions, these structures 

have distinct and desirable chemical and physical properties, such as a special surface area and optical, magnetic, 

electrical, thermal, and mechanical behavior [1- 6]. Magnetic nanoparticles (MNPs) contain numerous distinct 
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magnetic properties, including high magnetic susceptibility, high coercivity, superparamagnetic, low Curie 

temperature, etc. [7].   MNPs have piqued the attention of researchers due to their fascinating properties and 

wide range of diverse applications in high-density data storage, ferrofluids, and as catalysts. In bioapplications, 

containing detection of biological entities (virus, bacterial, enzyme, nucleic acids, cell, protein, etc.) and 

magnetic bioseparation [7]. In addition, MNPs have been employed to create heat to treat hyperthermia, produce 

contrast influences for magnetic imaging, and dominate targeted drug delivery remotely [8]. For a variety of 

factors, iron oxide nanoparticles have been identified as the best candidate. (1) abundance, (2) simple 

preparation, (3) simple access to several oxidation states and polymorphs, (4) a diverse range of electrical and 

magnetic properties, and (5) Iron oxide nanoparticles are an appropriate prototype of functional material with a 

varied spectrum of electrical and magnetic properties due to their low toxicity and spontaneous elimination [9]. 

In addition, due to their high biocompatibility, iron oxide nanoparticles are promising nanomaterials. The 

biocompatibility of iron oxide nanoparticles is the primary factor propelling significant research efforts to 

commercialize these nanoparticles for use in sophisticated applications of medical technology [8, 10, 11].  Iron 

oxide can be found in variations of forms in nature. The most prevalent are hematite (α-Fe2O3), maghemite (γ-

Fe2O3), and magnetite (Fe3O4) [12, 13]. Magnetite (Fe3O4) is a promising candidate among known crystal 

polymorphs of iron (III) due to its biocompatibility and biodegradable activity [14]. Fe3O4 NPs exhibit either 

superparamagnetic (if the size is under 15 nm) or ferromagnetic behavior [8]. Magnetite is a naturally occurring 

mineral that has been greatly utilized in biological applications inclusive, magnetic separation, magnetic drug 

delivery, magnetic, resonance imaging, and magnetic hyperthermia [8, 15- 20].  The physical, chemical, and 

biological approaches are currently the three most significant reported routes for the creation of Fe3O4 

nanoparticles [21, 22]. Chemical methods have an advantage over physical and biological ones when it comes to 

creating new materials with higher chemical homogeneity by combining different precursors and carefully 

regulating the size, shape, and content of nanoparticles. The chemical pathway also saves time and money 

because it does not require expensive tools or ingredients, making it a good method for manufacturing 

nanoparticles. Yet, the chemical method has significant downsides, such as the production of excess 

intermediates and contaminants and the possibility of colloidal agglomeration occurring during the synthesis 

process [23]. In this paper, we will focus on the influence of the chemical synthesis on the geometries, sizes, and 

thus magnetic characteristics of magnetite NPs, in addition, to the structure and summary of the properties of 

Fe3O4 nanoparticles. 

2. Iron Oxides 

There are eight known iron oxides [24]. Because of their polymorphism, which involves temperature-induced 

phase transitions, Hematite, maghemite, and magnetite are so widespread candidates among these iron oxides 

and each one has distinct catalytic, magnetic, biochemical, and characteristics that make them suitable for a 

variety of biomedical and technical applications [25]. 

 

2.1. Hematite (α-Fe2O3)  

With an antiferromagnetic order below Néel temperature and a corundum crystal structure, α-Fe2O3 is the most 

stable iron oxide phase (955 K).  Two-thirds of the octahedral sites limited through the roughly ideal hexagonal 

close-packed Oxygen lattice are occupied by Fe
3+

 ions, as revealed in Figure 1(a). Due to its inexpensive and 

high corrosion resistance, hematite (α-Fe2O3) is commonly utilized in gas sensors, pigments, and catalysts, and 

as a source used for the preparation of magnetite and maghemite. Hematite is a 2.1 eV band gap n-type 

semiconductor under the circumstances of the environment [25- 27]. 

 

2.2. Magnetite (Fe3O4)  

Magnetite has a face-centered cubic with an inverse spinel structure, set up on thirty-two Oxygen ions and 

packed closely along the direction [28]. Magnetite includes both divalent and trivalent iron, unlike most other 

iron oxides. Fe
2+

 ions occupy 1/2 octahedral positions and the Fe
3+

 ions are distributed equally across the 

residual tetrahedral and octahedral positions. Fe
3+

 ions in A and B positions are antiferromagnetically coupled, 

whilst Fe
2+

 ions in the B position participate in macroscopic ferromagnetic characteristics, as displayed in Figure 

1(b).   Fe
3+

 ions within A and B positions are coupled antiferromagnetically while Fe
2+

 ions within the B position 

share macroscopic ferromagnetic characteristics. The divalent irons can be replaced partially or completely by 

another divalent ion (Zn, Mn, Co, etc).  So, magnetite can be either p-type or n-type semiconductors. Due to its 
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low band gap (0.1 eV), magnetite possesses the lowest resistivity among all iron oxides. Fe3O4 easily undergoes 

a phase transformation to maghemite at room temperature [25, 27]. 

 

2.3. Maghemite (γ-Fe2O3) 

Maghemite has a cubic structure, each unit of γ-Fe2O3 has 21⅓ Fe
3+

 ions, 2⅓ vacancies, and 32 O
2−

 ions. The 

O
2−

 ions form a cubic packed closely array, whilst the Fe
3+

 is spread between tetrahedral sites (8 Fe ions per unit 

cell) and octahedral positions (the residual iron ions and vacancies), as shown in Figure 1 (c). Maghemite is 

oxidized magnetite and a 2.0 eV bandgap n-type semiconductor. Maghemite with good dispersivity in aqueous 

media can be synthesized by an inexpensive technique. It is classified as a ferromagnetic oxide and possesses a 

spinel structure nearly to that of magnetite [25, 27]. 

 

 

 

 

 

 

 

Figure 1: Crystal structure of the Hematite, Magnetite, and Maghemite (the black ball is Fe
2+

, the green ball is 

Fe
3+

 and the red ball is O
2−

) [25]. 

 

3. Properties of Magnetite (Fe3O4) Nanoparticles  

The magnetic characteristics of Fe3O4 NPs are controlled via the size of the particle. When ferrimagnetic Fe3O4 

NPs are enough small in size, they exhibit superparamagnetic characteristics with a great response to the 

magnetic field applied. Figure 2 depicts the transformation of ferrimagnetic to superparamagnetic characteristics, 

where the MNPs change to single-domain magnetism from multi-domain magnetism as their size decreases. The 

increase of coercivity to a maximum value is due to the reduction of size to a specific size called the critical 

diameter, Ds. At this point, the same direction is indicated by all of the magnetic spins, improving the magnetic 

property, and MNPs are typically hard to demagnetize due to their high coercivity. More decreasing size rapidly 

reduces the coercivity value until it equals zero, at which point the NPs are said to be in a superparamagnetic 

state. Generally, Fe3O4 NPs with diameters less than 20 nm have superparamagnetic properties [8, 23]. 

 

 

 

 

 

 

 

 

Figure 2: Relation between coercivity, HC, and magnetic particle diameter, D [23]. 
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As displayed in Figure 3, superparamagnetic Fe3O4 NPs differ from ferrimagnetic particles in that they lack 

coercive force and hysteresis loops because of single-domain magnetism, allowing them to be magnetized just in 

the existence of an external magnetic field. As a result, employing an external magnetic field to control these 

superparamagnetic Fe3O4 nanoparticles is simple. Superparamagnetic nanoparticles exhibit a stronger and 

quicker magnetic response to an external magnetic field, which is also worth noticing [23].  

 

 

 

 

 

 

 

 

Figure 3: Magnetization vs. applied field (M–H) curve of the superparamagnetism (blue color) and 

ferrimagnetism (orange color) [23]. 

Table 1 displays the physical and magnetic properties of Fe3O4 NPs [24, 29, and 30].  In the biological field, the 

saturation magnetization values are the most important feature. High saturation magnetization values improve 

drug delivery to cancer cells, image projection resolution in MRI, and heat dissipation in MHT. 

Table 1: Summary of the properties of Fe3O4 nanoparticels. 
Property Magnetite 

Molecular formula Fe3O4 

Type of magnetism Ferrimagnetic 

Density (g/cm3) 5.18 

Curie temperature (K) 850 

Saturation magnetization (Ms) at 300K [emug
-
1] 92–100 

Melting point (
o
C) 1583-1597 

Standard Gibbs free energy of formation (∆Gf0) [kJ/mol] -1012.6 

Structural type Inverse spinel 

Crystallographic system Cubic 

Lattice parameter (nm) a = 0.8396 

Lattice angles  α =  γ = β = 90 

Band gap energy (Eg) [eV] 2.6 

Color Black 

Formula units/unit cell 8 

Hardness 5.5 

 

4. Chemical Methods for Synthesis of Fe3O4 NPs  

 A typical magnetite preparation reaction is explained below by depicting the compound's composition [29]. 

FeO                       +                 Fe2O3                                                    Fe3O4 

(Ferrous Oxide)                        (Ferric Oxide)                                       Magnetite 
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Much research has been developed in the last few decades to prepare iron oxide nanoparticles, and considerable 

studies have been published that describe efficient synthesis methods for producing stable, biocompatible, shape-

controlled, and monodispersed iron oxide NPs. Hydrothermal synthesis [7], Co-precipitation [31], Sol-Gel, and 

thermal decomposition method [28], are all Chemical methods for producing high-quality magnetite NPs.   

 

4.1. Hydrothermal Synthesis 

These reactions take place in aqueous media in autoclaves or reactors where the pressure (generally between 0.3 

and 4 MPa) and temperature can be adjusted (in general from 130 - 250
o
C. To achieve supersaturating, 

hydrothermal procedures depend on the capability of water to hydrolyze and dehydrate metal salts at extreme 

conditions, as well as the very low solubility of the resultant metal oxides in water at these limits [7, 32]. Iron 

oxide NPs with appropriate shape and size control are technologically significant because of the powerful 

correlation between these parameters and magnetic characteristics [33]. The hydrothermal approach is 

environmentally friendly, inexpensive, and straightforward, and the reaction was carried out at relatively low 

temperatures. This technique controls particle size in crystallization and morphology via reaction time and 

temperature, allowing for the creation of high-quality nanoparticles [28, 34-38]. The hydrothermal method is 

sometimes used to prepare single crystal particles free of dislocation defects, and grains created in this technique 

may possess higher crystallinity than grains formed in other methods, implying that hydrothermal synthesis is 

more likely to produce iron oxide NPs with highly crystalline [7]. Many researchers successfully fabricated iron 

oxide NPs by hydrothermal method [39- 44].  In 2014 [40], conducted a comprehensive investigation of the 

influence of reaction time and temperature on particle size in this process. As stated by transmission electron 

microscopy examination, the size of the NPs increased from (14.5- 29.9) nm at reaction temperature raised from 

100 – 180°C for twelve hours. At 180°C, the size of nanoparticles grows from (20.6 – 123.44) nm as the reaction 

time was raised from (1 – 48) h. This means that the reaction times had a more significant impact on the particle 

size than temperature.  N. Gómez et al. [28], fabricated Fe3O4 NPs via a hydrothermal process. In addition, they 

investigated the influence of reaction temperature on the morphology, phase structure, particle size, and the 

shape of products. The X-ray diffraction pattern displayed that all the NPs were Fe3O4 in a pure magnetite phase. 

The produced NPs had uniform morphology with a high level of crystallinity at all temperatures, as noticed by 

TEM. Figure 4 revealed a TEM image of NPs prepared at 120
o
C.  As a result, by elevating the temperature to 

120°C, 140°C, and 160°C, it was feasible to create quasi-spheres, octahedrons, and cubes in the nanometric 

regime. The hydrothermal method was chosen by S. Ni, et al. [44], to produce well dispersed, well crystallized 

and, high purity Fe3O4 nanoparticles which can be easily obtained by this method. The product was obtained at 

90 C for 24 h with an average diameter of approximately 160 nm in the presence of sodium sulfate. S. Ahmadi et 

al. [43] have used a facile hydrothermal technique to fabricate highly crystallite Fe3O4 nanocrystals.  The 

calculated average crystallite sizes are 13.4, 20.8, and 22.8 nm for the magnetite formed at 100, 150, and 200
o
C, 

sequentially. It is suggested that elevated temperature is desirable for the preparation of bigger magnetite NPs. 

Both crystallite and average particle size of the magnetite NPs are good identical, showing the single crystal 

structure of the crystals. The formed magnetite nanocrystals have superparamagnetic behavior whereas the 

saturation magnetizatio, and the coercivity increment with the increment of the hydrothermal temperature. The 

increment of both the saturation magnetization and the coercivity of the magnetite nanocrystals can be referred 

to as the spin canting influence and the reduced ratio of the surface-to-volume of the nanocrystals. Figure 5 

displays the hydrothermal synthesis of IONPs. 
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Figure 4: TEM image of the Fe3O4 NPs at 120
o
C [28]. 

 

 

 

 

 

 

 

Figure 5: Hydrothermal synthesis of IONPs [45]. 

4.2. Co-precipitation 

Co-precipitation is the most generally utilize method for producing Fe3O4 because of its advantages, which 

include an inexpensive and simple synthetic procedure, a high yield product with exceptional magnetic and 

crystal characteristics, and the use of an inorganic reactant. This process involves mixing ferric and ferrous ions 

in extremely basic solutions at elevated temperature or room temperature in a 2:1 molar ratio. The morphology 

and size of the Fe3O4 NPs rely on the type of salt utilized (e. g.  nitrates, perchlorates, chlorides, sulfates, etc.), 

ionic strength of the media, the PH value, the growth temperature, the ferric and ferrous ions ratio, and the other 

factors (e.g. dropping speed of basic solution, stirring rate) [46- 48]. Figure 6 reveals a schematic representation 

of Fe3O4 NPs formation during chemical co-precipitation.  S. ISLAM et al. [47] investigated the comparative 

formation of Fe3O4 NPs by co-precipitation and hydrothermal methods. The results reveal that in respect of 

particle size, saturation values of magnetization, and heat dissipation capability, the co-precipitation method is 

better, whereas in respect of absorbance (reflectance), and particle shape the hydrothermal method is better.  

 

 

 

 

 

 

 

 

Figure 6: Schematic representation of SPIONs formation during chemical co-precipitation [49]. 

M. Tajabadi and M. E. Khosroshahi [50], reported the influence of alkaline medium temperature and 

concentration on significant properties of Fe3O4 NPs. ferrous chloride hexahydrate and ferric sulfate 

heptahydrate are used as iron sources. At two different temperatures i.e. 25 and 70°C, NH4OH with (0.9-2.1) M 

concentration was utilized as an alkaline precursor. These results display that the particles prepared at higher 

temperature (70°C) and minimum alkaline concentration (0.9 M) possess the largest saturation magnetization, at 
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70°C around 68 emu/gr, in comparison with the smallest particle size at 25°C about 63 emu/gr. R. Rahmawati et 

al. [51] studied the influence of the frequency of ultrasonic waves and the stirring rate on the particle size of 

magnetite NPs prepared via co-precipitation protocol. Until 700 rpm, the average crystallite size of Fe3O4 NPs 

reduced from 24.0 to 22.3 nm, then increment to 25 nm up to 900 rpm. T.Q. Bui et al. [52], prepared 

monodisperse magnetite nanoparticles by an ultrasonically enhanced co-precipitation process. The TEM images 

revealed that the magnetite had homogeneously spherical nanoparticles in the form of nanoparticle agglomerates 

with an average diameter of 10 nm as revealed in Figure 7. Their research indicated that the magnetic 

responsiveness of Fe3O4 NPs generated by co-precipitation is dependent on the particle sizes and that the 

magnetic responsiveness increment as the particle size decreases. 

 

 

 

 

 

 

 

 

Figure 7: TEM image of   Fe3O4 NPs [52]. 

4.3. Sol-gel  

Because of its inexpensive cost, low sintering temperature, and capability to modify the size of the particle with 

homogeneous components, the sol–gel technique is popular [53-58]. The Sol-gel process starts with hydrolysis 

and poly-condensation to make a gel. Figure 8 showed a schematic diagram of the sol-gel process for the 

production of nanopowders. This process is an appropriate wet chemical technique for producing metal oxide 

nanoscale with particular characteristics [27, 30, 59]. One of the most significant disadvantages of this approach 

is accumulation during the washing operation, which makes it incapable of producing monodispersed 

nanoparticles [60]. Many researchers successfully prepared monodispersed and non-agglomerated nanoparticles 

utilizing this strategy to overcome this drawback [27, 61- 68]. Hydrolysis and condensation rates are important 

parameters that influence the characteristics of final particles. Slower and more controlled hydrolysis generate 

smaller particle sizes and more distinct characteristics. The solvent should be removed after the solution has 

condensed into a gel. Higher calcination temperatures are typically required to decompose the organic precursor. 

The size of the sol particles is determined by the composition of the solution, pH, and temperature [30, 54]. P. 

Hu et al. [63], synthesized monodisperse Fe3O4 NPs with 3-20 nm size via an explosion-assisted sol-gel method. 

The products were well-crystallized, highly pure Fe3O4 NPs according to the XRD and XPS. The influence of 

various temperatures of (5, 128, and 300) K on the way magnetic behaves was thoroughly investigated. Their 

finding displayed weakened hysteresis behavior at the temperature increment. At (the Verwey transition) 

temperature Tv, saturation magnetization (Ms) of 86.2emu/g is the highest. coercivity (Hc) decreases with 

temperature, while Initial susceptibility (ca) increases. O.M. Lemine et al. [64], synthesized Fe3O4 particles with 

an average size of 8 nm and well crystallinity have been prepared via adjusted sol–gel method under 

supercritical conditions of ethyl alcohol (EtOH).  XRD and Mössbauer analysis indicate that the NPs are single 

phases.  The presence of spherical NPs with homogeneous size distribution is revealed by TEM analysis as 

displayed in Figure 9.  At room temperature, SQUID measurements confirm the nanoparticles' ferromagntic 

behavior, with a saturated magnetization of 47 emu/g. S. Shaker et al. [54], studied the influence of different 

annealing temperatures of 200, 300, and 400
o
C on the particle size. These results reveal that the size of 

magnetite NPs can change by varying the annealing temperature. 
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Figure 8: Schematic diagram of sol gel process for production nanopowders [65]. 

 

 

 

 

 

 

 

 

Figure 9: TEM images of the NPs [64]. 

4.4. Thermal Decomposition 

One of the most widely utilized methods for producing monodisperse and highly crystalline IONPs is thermal 

decomposition [27]. Thermolysis, or thermal decomposition, is the process of treating a substance with heat. The 

thermal decomposition temperature is the temperature at which the chemical decomposes. This is an 

endothermic reaction because it requires heat to break the chemical bonds [66]. Figure 10 displays a schematic 

diagram of magnetite nanoparticles synthesis by thermal decomposition. With the technique, iron oxide NPs 

have been prepared to utilize the decomposition of organometallic precursors i.e. Fe (cup)3 (cup = N-

nitrosophenylhydroxylamine), Fe(acac)3 (acac = acetylacetonate), or Fe(CO)5 (co= carbonyls), after that, 

oxidation can result in monodispersed aloft -quality iron oxide NPs, although this normally necessitates higher 

temperatures and a more difficult procedure [7,67]. D. Maity et al. [68], reported a fabricated of water-dissoluble 

Fe3O4 NPs via thermal decomposition of iron (III) acetylacetonate, Fe(acac)3 in tri(ethyleneglycol). TEM points 

out that Fe3O4 NPs are relatively monodispersing with an average crystallite of 10.7 nm as revealed in Figure 11. 

The   Size and the composition of the product particles are relayed on factors such as the temperature, the 

surfactant molecule length, and the reaction time [69]. N. J. Orsini et al. [70], have reported succeeding in 

preparing Fe3O4 NPs with diameters d, 7nm≤d≤12nm, by thermal decomposition of Fe(acac)⁠3. The structural 

and magnetic characteristics of nanocrystals were studied in relation to different reaction conditions.  The most 

essential parameter controlling the final particle size prepared by thermal decomposition is the heating rate. 

Table 2 displayed different methods and morphology of magnetite of Fe3O4 nanoparticles. 
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Figure 10: Synthesis of MNPs by thermal decomposition [71]. 

 

 

 

 

 

 

 

 

Figure 11: TEM image of the Fe3O4 NPs. Inset is the HRTEM image of individual Fe3O4 nanocrystals [68]. 

 

Table 2: Different methods and morphology of magnetite of Fe3O4 nanoparticles. 

Method of 

Synthesis 

Precursor 

 
Morphology Ref. 

Hydrothermal 
Fe3O(OCOCH3)6NO3, 

FeCl2⋅4H2O. 

Spherical NPs with an average diameter of 10 nm, were prepared at 

180oC for 20 h and the value of pH is 8.6. 
[72] 

Hydrothermal 
Fe3O(OCOCH3)6NO3, 

FeCl2⋅4H2O. 

Nanorods with an average width of about 25nm and a length of 

about 200nm. 
[72] 

Co-precipitation 
FeCl3⋅6H2O 

FeCl2⋅4H2O 

Nanoparticles were nearly spherical and non-aggregated with a 

mean size of 10 nm. 
[73] 

thermal 

decomposition 

iron acetylacetonate 

(acac) 

iron oleate complexes 

Uniform nanoparticles are composed of a mixture of triangular, 

cubic, and diamond-shaped particles, with an average particle size 

of 11 nm. 

[74] 
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thermal 

decomposition 
Fe (NO3)3·9H2O 

Ultrafine particles which are closely packed form nano-aggregates 

(≤ 100 nm). There is a powerful agglomeration of NPs with the size 

of 10 nm. 

[75] 

sol–gel Fe (NO3)3·9H2O 
Nanoparticles had been agglomerated, particles of grain dimensions 

having a range of 15–30 nm. 
[76] 

Solvothermal FeCl3 ⋅ 6H2O 
A spherical shape of Fe3O4 particles has uniform sizes and good 

dispersibility with a mean diameter of 326 nm. 
[77] 

 

5. Conclusions 

Nowadays, Magnetic NPs have piqued the attention of researchers due to their intriguing properties and diverse 

applications. Many chemical synthesis routes, including sol-gel, thermal decomposition, hydrothermal, and co-

precipitation, have revealed some benefits and disadvantages for the preparation of nanoparticles. Magnetite 

nanoparticles' (sizes and geometries) and magnetic properties are two important properties that can be obtained 

using suitable synthetic approaches. As a result, the sizes and shapes of magnetic Fe3O4 NPs are critical 

structural factors that influence many characteristics of NPs and their capabilities in various applications. 
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