Effect of Precursor Concentration on the Structural, Optical, and Electrical Properties of WO3 Thin Films Prepared by Spray Pyrolysis
Journal of Applied Sciences and Nanotechnology,
2022, Volume 2, Issue 4, Pages 91-105
10.53293/jasn.2022.4715.1139
Abstract
Using a chemical spray technique, an n-type WO3 polycrystalline thin film was prepared with optimizing parameters (molarity concentration of 80 mM and a substrate temperature of 350 °C). Study the physical properties of WO3 thin film via UV-Visible spectroscopy, XRD, Field Emission-Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy, Atomic Force Microscopy, and current-voltage. Tungsten oxide was deposited on glass surfaces at different molarities ranging from 50–90mM. In the UV-Visible spectrum of the WO3 thin film, it was found that the transmittance, reflectivity, and energy gap decreased (78%–53%), (9.63%–5.02%), and (3.40eV–2.63 eV), respectively. The X-ray diffraction of the WO3 film at the optimized was poly-crystalline and had a monoclinic phase, and the preferred orientation (hkl) was 200 at 2 = 24.19. From the image FESEM and EDX, it was found that it has a multi-fibrous network. The average diameter of the fiber is 266 nm, and the ratio of tungsten to oxygen (W/O) is 2.6, with a stoichiometric of 68.6% at the 80 mM concentration. The Atomic Force Microscopy shows that the WO3 thin layer has a nanostructure. The average surface roughness was 5.3 nm, and the Root Mean Square was 8.6 nm. The WO3 film had the lowest resistivity value of 2.393 × 108W cm, and the activation energy was 0.298 eV, among the parameter of the current voltage at substrate temperature and concentration optimum.
Main Subjects:
- Article View: 30
- PDF Download: 33