Nanotechnology
Rusul Mohammed Alsaffar; Balqees M. Al-Dabbagh; Hanaa K. Jawad
Abstract
In this work, two methods for creating carbon nanoparticles from oil waste or by products, which accumulate on pipes and Furnaces walls and reduce equipment efficiency and service life (that can hinder the production process, accordingly it is removed weekly) — are compared. These waste products ...
Read More ...
In this work, two methods for creating carbon nanoparticles from oil waste or by products, which accumulate on pipes and Furnaces walls and reduce equipment efficiency and service life (that can hinder the production process, accordingly it is removed weekly) — are compared. These waste products or by products result from the incomplete burning of hydrocarbon compounds during crude oil refining to produce petroleum products. The raw materials had been gathered from two places from Al-Dura refinery, sieving, burned in furnace of atmosphere that was both vacuumed and inert, crushed by mortar and washed by solvent, washing by distilled water, drying then reduced to nanoparticle size using direct crushing (sonication by probe) and indirect ultrasonic (bath sonication) processes. The samples were examined using the relevant procedures, such as EDX and SEM, as well as tests following crushing and burning. Zeta potential and particle size analysis were two additional tests conduct on the final products. The results showed that after burning, the proportion of carbon increased from 28.49, 36.30 to 91.59, and 94.47 % sequentially. Also, the direct ultrasonic method is superior to the indirect method for manufacturing carbon nanoparticles, which required less time and able to produce nanoparticles with average granular sizes about 37 nm and 86.6 nm for the first and second samples, respectively. Zeta potential data proved the resulting Nano carbon particles are quite stable.
Nanotechnology
I. Benammar; R. Salhi; J. -L. Deschanvres; R. Maalej
Abstract
This paper describes the systematic preparation of doped and undoped TiO2 with Er and/or Yb nanoparticles by hydrothermal-assisted sol-gel method using supercritical drying of ethanol followed by systematic calcination steps at 500°C, 800°C and 1000°C for 2/h. The structural study of these ...
Read More ...
This paper describes the systematic preparation of doped and undoped TiO2 with Er and/or Yb nanoparticles by hydrothermal-assisted sol-gel method using supercritical drying of ethanol followed by systematic calcination steps at 500°C, 800°C and 1000°C for 2/h. The structural study of these powders with XRD reveals that our samples are crystalline with a tetragonal structure and anatase phase, which is well crystallized at 500°C. The annealing at 800°C reveals a transformation of the anatase phase to the rutile phase, which is well crystallized at 1000°C. The XRD analysis clearly indicates that the dopants are incorporated into the TiO2 network without any phase segregation-taking place in these nanoparticles. The study of the grain sizes has shown that they are nanometric in size of around 8-12 nm and that their sizes decrease with Er and/or Yb doping. The elemental analyses with micro-EDX using SEM confirmed the presence of chemical elements of TiO2 nanoparticles with expected atomic ratios. The analysis of the SEM images confirmed the XRD observations. In addition, they attest that the nanoparticles are spherical in shape. The optical analysis with excitation at 488 nm shows the presence of three emission bands in the green zone and the red zone. The heat treatment improves the optical, structural and spectroscopic properties and eliminates the contaminations that are due to the preparation conditions.
Nanotechnology
Aseel S. Jasim; Odai N. Salman
Abstract
In this work, we reported a study on the hydrothermal process used to create TiO2 NRs films on FTO substrate utilizing two various solutions, the first one is composed of (ethanol, and titanium butoxide) while the second is composed of (HCl, DIW, and titanium butoxide). The study on the structural, morphological, ...
Read More ...
In this work, we reported a study on the hydrothermal process used to create TiO2 NRs films on FTO substrate utilizing two various solutions, the first one is composed of (ethanol, and titanium butoxide) while the second is composed of (HCl, DIW, and titanium butoxide). The study on the structural, morphological, optical, and electrical properties helped to identify the characteristics of the TiO2 film which were prepared by using different solvents, the first sample (TO1) presented anatase -phase crystal structure with (3.2 eV) energy gap while the second (TO2) presented a Rutile phase with (3 eV) energy gap. The (nanorod) morphology was observed for the (TO2) sample while irregular grains were found for the (TO1) sample. Transmittance measurements have been used to investigate the optical properties, which revealed that both samples were transparent in the visible wavelength range, and absorption coefficients were higher for sample (TO2) with a rutile phase. The activation energy was (0.0226) eV and (0.0643) eV for both samples (TO1) and (TO2), respectively. The n-type conductivity was confirmed by Hall Effect measurement for both samples. The highest conductivity (300.655) (Ω-1.cm-1) and carrier consternation (1.07355 ×1017) (cm-3) were attained from sample (TO1).
Nanotechnology
Marwa S. Alwazny; Raid A. Ismail; Evan T. Salim
Abstract
In this paper, the optical, structural, and surface morphology of novel lithium-niobate (LN) colloidal synthesis by ablation in liquid using a pulse laser method has been studied and analyzed for the first time. LiNbO3 suspensions are synthesized using a Q-switch Nd-YAG laser with two target types, each ...
Read More ...
In this paper, the optical, structural, and surface morphology of novel lithium-niobate (LN) colloidal synthesis by ablation in liquid using a pulse laser method has been studied and analyzed for the first time. LiNbO3 suspensions are synthesized using a Q-switch Nd-YAG laser with two target types, each with three different types of liquid environments: deionized water, ethanol, and acetone. The prepared colloidal is to go under further processes to be later used in the photonic application. The optical properties of the suspensions were evaluated by ultraviolet-visible (UV-Visible) measurements. The results showed that the colloidal had a transmission spectrum ranging between 88 to 98% for LN Target and 96 % to 98% for LN Z-cut wafer. The estimated energy gaps are (3.3-3.7 eV) for the prepared target and (4.1-4.3) for the LN Z-cut wafer, which gives good accordance with reported results in the range of ~ 3.7- 4 eV for all samples. In general, the Z-cut wafer target gives better results with ethanol based on optical properties. XRD measurements show the formation of a multi-phase with impurities for a prepared lithium niobate target and multi-phase LiNbO3 films with no impurities or a second phase for another Z-cut wafer. FESEM scan is measured for LiNbO3 films, and the particle size is about 20 and 23 nm.
Nanotechnology
Amani Z. Al Ani; Shihab A. Zaidan
Abstract
The mechanical and electrical properties relation are very important, especially for brittle material. Nano Alumina-unsaturated polyester (PS/Al2O3) composites were prepared by casting PS with different percentages (1, 2, 3, and 4 wt%) of Nano alumina. Electrical breakdowns caused cracks to form around ...
Read More ...
The mechanical and electrical properties relation are very important, especially for brittle material. Nano Alumina-unsaturated polyester (PS/Al2O3) composites were prepared by casting PS with different percentages (1, 2, 3, and 4 wt%) of Nano alumina. Electrical breakdowns caused cracks to form around the breakdown point, and the length and quantity of cracks increased with dispersed powder added increases. The research involved determining Weibull modulus from an electrical strength test, and mechanical strength by piston-on-three-ball test. The results showed that Weibull modulus and dielectric breakdown increase during the rate of rising voltage (RRV) increases, especially 5 kV/s. the maximum Weibull modulus measured by the electrical breakdown was at a high RRV is 34.58 (PS/Al2O3). High RRV leads to electromechanical breakdown and electrothermal strength at low RRV. While the Weibull modulus by the piston-on-three-balls test is lower than the Weibull modulus calculated by electrical strength. Therefore, this mechanical test is more accurate in identifying defects that fail due to an increase in the affected area of the applied stress. Scanning electron microscope (SEM) images showing the homogeneous distribution of the powders within the polymeric matrix. Some pores were present in the structure of the composite despite the measures taken to increase the dispersion using ultrasound waves. Those pores caused fluctuating results in all electrical and mechanical tests.
Nanotechnology
Rusul Al-Obaidy; Adawiya J. Hadier; Sharafaldin Al-Musawi; Norhana Arsad
Abstract
In this work, the development of nanosystems by Pulsed Laser Ablation in Liquid (PLAIL) is of considerable importance to expand their biomedical applications, such as drug delivery. In the present study, we focus on the conditions of the preparation Nd: YAG laser wavelength 266 nm and two different ...
Read More ...
In this work, the development of nanosystems by Pulsed Laser Ablation in Liquid (PLAIL) is of considerable importance to expand their biomedical applications, such as drug delivery. In the present study, we focus on the conditions of the preparation Nd: YAG laser wavelength 266 nm and two different laser fluency (10,28) J/cm2 to control the concentration and size stability of superparamagnetic iron oxide nanoparticles (SPION) prepared by PLAIL. The characteristics of SPION are investigated by energy-dispersive X-ray spectroscopy (EDX) spectra which showed strong peaks of Fe and O. Magnetic characteristics of iron oxide nanoparticles indicated superparamagnetic properties of SPION and suitable physical stability. Optical and chemical properties of SPION were investigated using UV-visible spectra (UV) and infrared Fourier transformed spectroscopy (FTIR). . Scanning electron microscopy (SEM) was used to obtain surface morphological studies of SPION.. Results showed that SPION is the only cubic shape, the peak absorption shifted toward short wavelengths with optimum concentration to the SPION in double deionized water (DDW) and in Acetone (0.75,0.33) mg/ml respectively, at high laser fluence 28 J/cm2, and this enhancement of value is due to particle size and color resultant in a solution. Eventually,, this product has the optimal SPION specialty ratio of SPION in the DDW solution at 53.89%, and the size is very suitable for drug delivery applications.
Nanotechnology
Worood A. Abd-Alameer; Aqeel S. Al-Adili; Sadeer M. Khatab
Abstract
Attapulgite clay is a hydrated magnesium aluminum silicate mineral. Attapulgite clay stone in the Bahr al-Najaf region contains calcite and quartz minerals (43.4%. and 13.9% by weight), respectively. This work is devoted to develop the attapulgite clay found in Bahr Al-Najaf to be suitable for ...
Read More ...
Attapulgite clay is a hydrated magnesium aluminum silicate mineral. Attapulgite clay stone in the Bahr al-Najaf region contains calcite and quartz minerals (43.4%. and 13.9% by weight), respectively. This work is devoted to develop the attapulgite clay found in Bahr Al-Najaf to be suitable for oil wells drilling. The goal of this project is to develop attapulgite mud that meets the American Petroleum Institute (API) for the application of oil well drilling mud in Bahr Al-Najaf. To achieve this objective, unwanted materials (calcite and quartz particles greater than 75 µm in diameter) should be removed and the attapulgite rods dispersed. To make attapulgite mud appropriate for oil well drilling mud. Wet sieving was used to remediate Iraqi attapulgite mud in this study. XRD and SEM tests were done to determine the metals and shape of the prepared Nano MgO to improve the rheological properties. The rheological parameters of attapulgite were measured using an ofite viscometer. Nano MgO was added to attapulgite in three proportions (0.02, 0.05, and 0.08) gm wt. Magnesium oxide showed a great contribution to apparent viscosity and plastic viscosity by 16% of attapulgite aqueous suspensions. The higher viscosity will provide better cuttings carrying capability during drilling fluid circulation especial at low velocity.
Nanotechnology
Fatin A. Asim; Entessar H. A. Al-Mosawe; Wafaa A. Hussain
Abstract
Denture base poly (methyl methacrylate (PMMA) resin is one of the most frequently used materials in denture base synthesis, but due to its poor mechanical properties, PMMA can be considered a medium for the attachment and growth of a variety of pathogenic bacteria and fungi, particularly due to PMMA's ...
Read More ...
Denture base poly (methyl methacrylate (PMMA) resin is one of the most frequently used materials in denture base synthesis, but due to its poor mechanical properties, PMMA can be considered a medium for the attachment and growth of a variety of pathogenic bacteria and fungi, particularly due to PMMA's pores and rough surface. The porosity percentage and surface roughness of the PMMA resin sample was lowered in this study, which resulted in a reduction in microorganisms' surface adhesion by varying the ratios of additives such as zinc oxide (ZnO) and tri-calcium phosphate (TCP) nanoparticles with (1, 2, 3, and 10% wt percent) for each additive separately, and 3% as a combination of ZnO and TCP nanoparticles in an equal ratio. Additionally, mechanical features such as surface hardness are developed, which is a critical attribute for polishing and easy finishing, as well as offering great scratch resistance during denture base cleaning. These results indicated that when compared to the other groups, PMMA (ZnO wt. 1%) and TCP-wt. 1%) reinforced composite resins demonstrated the best optimum properties. Additionally, it was discovered that adding 1% of NPs improved the mechanical qualities, which benefited the biological properties by reducing bacterial adherence to the PMMA composite resin.
Nanotechnology
Ali J. Addie; Raid A. Ismail; Mudhafar A. Mohammed
Abstract
In this work, a simulation analysis of a commercial magnetron sputtering source was performed using the finite element method Particle-in-Cell/Monte Carlo Collision (PIC/MCC) to optimize the configuration of the Zn-C mosaic target. The magnetic field distribution was solved in a two-dimensional cylindrical ...
Read More ...
In this work, a simulation analysis of a commercial magnetron sputtering source was performed using the finite element method Particle-in-Cell/Monte Carlo Collision (PIC/MCC) to optimize the configuration of the Zn-C mosaic target. The magnetic field distribution was solved in a two-dimensional cylindrical coordinate system, and particles such as electrons, atoms, and charged ions of argon, zinc, and carbon were tracked in a DC magnetron sputtering system. The sputtering yield profile and particle flux for the eroded target were studied considering the ion and electron density distributions. The maximum sputtering flux of zinc and carbon was 1.975´1021 m-2.s-1 and 3.7´1018 m-2.s-1 respectively. The erosion position of a target was predicted based on the maximum power density distribution at the surface of the target. The accuracy of the simulation was checked by comparing it with the measurement of the target eroded after several hours of sputtering. However, as for the Zn-C mosaic target, the racetrack was identical to the analysis predicted by the numerical simulation process. The results of this work can be used as a guide for designing mosaic targets and optimizing their use for fabricating nanohybrid thin film structures.
Nanotechnology
Alyaa M. Awad; Khalid A. Sukkar; Dalia M. Jaed
Abstract
Iraqi petroleum refineries produce large quantities of base lubricating oils (lube oils). Managing the influence of nano-additives on the lube oil nanofluids is required deep understanding to explain the resulting new specifications of produced nano-lubricants. The present study investigated the effect ...
Read More ...
Iraqi petroleum refineries produce large quantities of base lubricating oils (lube oils). Managing the influence of nano-additives on the lube oil nanofluids is required deep understanding to explain the resulting new specifications of produced nano-lubricants. The present study investigated the effect of Al2O3 NPs addition on the thermal properties of lube oil stock-60. Different mass additions of 0.25, 0.65, 1.05, 1.45, and 1.85 wt.% of Al2O3 NPs at operating temperatures of 20-50°C were evaluated. Also, the thermal conductivity coefficient of the prepared nanofluid was studied at the full range of the experimental temperatures (20-50°C). It was noted that the addition of Al2O3 NPs improved the thermal properties of the prepared nano-lubricant due to the high thermal conductivity of the added Al2O3 NPs. Moreover, the greatest improvement in the thermal conductivity of modified nano-lubricating oil was 13.02% at added Al2O3 mass fraction of 1.85%. The results indicated that the viscosity index of the prepared nano-lubricant was improved dramatically with Al2O3 NPs addition increase at measured standard temperatures of 40 and 100°C. The viscosity index of lubricant nanofluid is increased up to 2.46% at a weight fraction of 1.85%. The flashpoint increased by 1.33, 3.54, 5.75, 7.52, and 9.73% for mass fraction of 0.25, 0.65, 1.05, 1.45, and 1.85 wt.%, respectively. Furthermore, the highest flashpoint value was 248oC of prepared nanofluid lube oil with 1.85 wt.% of Al2O3 NPs. Finally, the produced nano-lubricating oil has high operating quality with economic feasibility. Furthermore, an accurate correlation for predicting the viscosity of both types of nano-lubricants was provided.
Nanotechnology
Zahraa S. Ghazi; Mohammad R. Mohammad; Manal A. Abbood; Amal A. Hussein
Abstract
Silver nanoparticles were prepared by the chemical reduction method. Silver nitrate was taken as a metal precursor and sodium borohydride as a reducing agent with polyvinyl alcohol (PVA) stabilizers of different concentrations, polyvinylpyrrolidone (PVP). X-ray diffraction (XRD), transmission electron ...
Read More ...
Silver nanoparticles were prepared by the chemical reduction method. Silver nitrate was taken as a metal precursor and sodium borohydride as a reducing agent with polyvinyl alcohol (PVA) stabilizers of different concentrations, polyvinylpyrrolidone (PVP). X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques have been used, these measurement results showed that the prepared material is silver nanoparticles. The average size of silver nanoparticles using the Scherrer equation with values ranging from 8.49-12.15nm. TEM images showed that the silver nanoparticles are spherical in size between 5-47nm. Nanoscale distribution of silver nanoparticles (AgNPs) prepared at different concentrations was studied by AFM. Silver nanoparticles showed high antimicrobial and antibacterial activity against Gram-positive bacteria such as Escherichia Coli and Gram-negative Staphylococcus aureus, whose bacterial activity was dependent on the concentration of PVA and PVP and the degree of intramolecular accumulation. Low concentrations of PVP lead to increase the activity, while high concentrations of PVA give better activity.
Nanotechnology
Sanaz Khademolqorani; Seyedeh Nooshin Banitaba
Abstract
Nanoparticles (NPs) are referred to as tiny materials in size ranging from 1 to 100 nm. Unique characteristics of the NPs, including small sizes and high surface area, appropriate reactivity, proper stability, great strength, and many more, have resulted in their wide use in numerous fields. Among different ...
Read More ...
Nanoparticles (NPs) are referred to as tiny materials in size ranging from 1 to 100 nm. Unique characteristics of the NPs, including small sizes and high surface area, appropriate reactivity, proper stability, great strength, and many more, have resulted in their wide use in numerous fields. Among different techniques reported for synthesizing the nanoparticles, electro-hydrodynamic atomization or electrospray has been identified as a well-practiced and high efficient technique for the formation of fine and homogenous NPs from a liquid under the influence of electrical forces. This process allows feasible encapsulation of different drugs, vitamins, and proteins applicable in the targeted drug delivery systems. Since the release rate of the loaded pharmaceutical materials could be easily tuned via varying the properties of core and shell components. Herein, we summarized the importance of the electrospray technique for the production of drug-loaded nanoparticles applicable in controlled drug delivery systems.
Nanotechnology
Abbas A. Thajeel; Mohammed A. Ibrahem; Duha S. Ahmed
Abstract
Nanoplasmonic sensing, based on the plasmonic resonance absorption of thin, irregularly-shaped Au nanostructures film, with a starting thickness of about 15 nm (±3 nm) sputtered on a quartz substrate, is used to monitor the CeO2 NPs (with an average diameter of 50 nm) film refractive index variations ...
Read More ...
Nanoplasmonic sensing, based on the plasmonic resonance absorption of thin, irregularly-shaped Au nanostructures film, with a starting thickness of about 15 nm (±3 nm) sputtered on a quartz substrate, is used to monitor the CeO2 NPs (with an average diameter of 50 nm) film refractive index variations using different film thicknesses (90 nm, 146 nm, 172 nm, and 196 nm). Increasing the film thickness of solution-processed CeO2 NPs film, with layer-by-layer deposition on top of Au nanostructures, shows a significant redshift in the plasmonic resonance absorption of the plasmonic metal, from 580 nm to 611 nm. Such an increase is related to the change in the building microstructure of the semiconductor’s film which is reflected in changing its refractive index. Plasmonic surface refractive index sensitivity of 437.5 nm/RIU with FOM of 4.2 has been recorded. Such a sensing technique offers a large potential for developing cost-effective plasmonic nanosensing devices for clinical applications. This sensor structure is versatile and can be utilized to sense and monitor a large variety of materials and chemicals.
Nanotechnology
Shahad S. Khudiar; Uday M. Nayef; Falah A. Mutlak
Abstract
Photoelectrochemical etching (PECE) was used to prepare porous silicon (PS) layers of polished surfaces of (100) n-type silicon wafers with a resistance of 0.1-100 μm and thickness of 600 ± 25 μm. The directed slices are to be catalyzed at different etching times (5, 15, 25 min) with a constant ...
Read More ...
Photoelectrochemical etching (PECE) was used to prepare porous silicon (PS) layers of polished surfaces of (100) n-type silicon wafers with a resistance of 0.1-100 μm and thickness of 600 ± 25 μm. The directed slices are to be catalyzed at different etching times (5, 15, 25 min) with a constant Hydrofluoric acid of 20% and with a fixed current density of 20 mA/cm². The porous silicon morphology was investigated using scanning electron microscopy (SEM). Samples were formed by different engraving times. It revealed that the silicon surface has a layer of sponge-like structure, with the average pore diameter (740±1 nm, 550±2 nm,460±3 nm) of the porous silicon increasing as the etching time increased. PS Al PS /Si /Al photodetectors were found to work as a photodetector over a wide wavelength responsivity.
Nanotechnology
Sahar M. Abd Zaid; Adnan A. AbdulRazak; Mohammad F. Abid
Abstract
The production of clean liquid fuels is critical to maintaining a healthy life and environment around the world. To meet the new sulfur standard requirements, sulfur compounds must be effectively and completely removed from fuel oil. Therefore, researchers' attention turned to research into different ...
Read More ...
The production of clean liquid fuels is critical to maintaining a healthy life and environment around the world. To meet the new sulfur standard requirements, sulfur compounds must be effectively and completely removed from fuel oil. Therefore, researchers' attention turned to research into different techniques to remove sulfur from kerosene. This review focused on discussing a variety of catalysis approaches and emerging technologies for ultra-deep desulfurization of refinery streams for ultralow sulfur, such as hydrodesulfurization, catalytic-oxidative desulfurization, and adsorption desulfurization to form clean liquid fuels. This review discusses the most important industrial parameters that influence sulfur removal processes and has focused primarily on the main role of the catalyst and its type in impacting the efficiency of the process. Also, it will discuss the concepts of nano-catalysts, their preparation methods, and the most common forms, were described such as graphene, carbon nano-tubes (CNTs), metal-organic frames (MOVs), and zeolites. A comparison between the nano-catalyst and the conventional catalyst was also discussed to show the great effect of the nano-catalyst in improving the removal processes, which will lead to the development of innovative, efficient desulfurization methods that produce zero-sulfur fuels. In addition, understanding the most important challenges in nano-catalysts.
Nanotechnology
Iman H. Hadi; Muslim F. Jawad; Khaleel I. Hassoon
Abstract
In this work, synthesis of titanium thin films on two different substrates (glass and n-type Si), with thicknesses of 90 and 145 nm at two different times (5 and 10 min) respectively, has been obtained. The thin films have been successfully deposited on glass and silicon substrates using DC diode sputtering ...
Read More ...
In this work, synthesis of titanium thin films on two different substrates (glass and n-type Si), with thicknesses of 90 and 145 nm at two different times (5 and 10 min) respectively, has been obtained. The thin films have been successfully deposited on glass and silicon substrates using DC diode sputtering technique. The optical properties of the prepared thin films have been checked out using the optical reflectance spectrum. A significant reduction in surface reflectivity was observed at (10 min) sputtering time. The structural properties of the prepared thin films were studied using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). XRD results confirmed that titanium thin films had a hexagonal structure with preferred orientation on (002). The images of FESEM showed that all the samples had a uniform distribution of granular surface morphology. The grain sizes of the Ti nanostructure were estimated using Scherrers’ analysis. The thickness of Ti thin film increased as the sputtering time increased for both glass and Si n-type substrates. The repeated experiments revealed that most uniform Ti thin film is on Si substrate (n-type) with particle size 10 nm at deposition time 5 min.
Nanotechnology
Ihsan Ali; Ameen D. Thamer; Faras Q. Mohammad
Abstract
High strength low alloy steel (HSLAS) is quite sensitive to hydrogen embrittlement due to its different phases. This study investigated the hydrogen embrittlement (HE) behavior of uncoated, physically vapor deposition (PVD) coated, and chemically vapor deposition (CVD) coated HSLAS. The XRD indicates ...
Read More ...
High strength low alloy steel (HSLAS) is quite sensitive to hydrogen embrittlement due to its different phases. This study investigated the hydrogen embrittlement (HE) behavior of uncoated, physically vapor deposition (PVD) coated, and chemically vapor deposition (CVD) coated HSLAS. The XRD indicates the formation of ZnO, Zn(N3)2, γN and C3N4 phases at the outer coating layer. The results show that combination of surface nitriding and zinc deposition are efficient method against hydrogen embrittlement. This could be attributed to the reduction of hydrogen that is generated by the reaction of surface Zn) N3)2 phase and the low rate of hydrogen transport through the γN phase. The coatings were tested by immersing the tensile samples in a diluted H2SO4 solution with water for 24 hours. Additionally, the result shows that combined coating resulting in higher tensile strength, yield stress, and tensile elongation compared to uncoated samples. Hardness results indicate that the combined coatings (PVD + CVD) has the higher value of about 258 HV, followed by the uncoated sample of about 218 HV, while the PVD only coated sample have the lower hardness value of about 175 HV.
Nanotechnology
Israa F. Hasan; Khawla S. Khashan; Aseel A. Hadi
Abstract
Titanium dioxide nanoparticles were produced in this work by laser ablation of a high purity titanium objective immersed in distilled water. Optical and structural properties of the obtained TiO2 NPs using a Q-switched Nd: YAG laser of 1064nm wavelength with different laser energy (80, 100, 120, 140, ...
Read More ...
Titanium dioxide nanoparticles were produced in this work by laser ablation of a high purity titanium objective immersed in distilled water. Optical and structural properties of the obtained TiO2 NPs using a Q-switched Nd: YAG laser of 1064nm wavelength with different laser energy (80, 100, 120, 140, and 160) mJ at 100 pulses was studied. The produced TiO2 NPs were characterized employing UV-VIS Spectrophotometer, X-ray diffraction, and scanning electron microscopy (SEM). The obtained TiO2NPs showed a decrease in transmittance in the region of the UV spectrum and an increase in the visible spectrum region. The estimated optical band gap of the TiO2NPs was 3.89eV, 3.8eV, and 3.70eV at 80, 120 and 160mJ laser energy, respectively. The as-produced TiO2NPs appear to be a Brookite crystalline phase with the preferential orientation along (200) direction. The scanning electron microscopy assays showed that the TiO2 NPs have a cauliflower shape. Results show that with increasing the energy of laser pulse, the size of nanoparticles was increased noticeably. Where the particle size and its morphology are affected by laser energy.
Nanotechnology
Saja H. Salim; Riyad H. Al-Anbari; Adawiya Haider
Abstract
Due to low water fluxes, commercial ultrafiltration (UF) membranes used in water treatment need to be improved. High-quality UF membranes were fabricated from polysulfone (PSF)/titanium dioxide (TiO2) nanocomposite fibers as substrates using the spray pyrolysis method. The influence of nano-TiO2 on the ...
Read More ...
Due to low water fluxes, commercial ultrafiltration (UF) membranes used in water treatment need to be improved. High-quality UF membranes were fabricated from polysulfone (PSF)/titanium dioxide (TiO2) nanocomposite fibers as substrates using the spray pyrolysis method. The influence of nano-TiO2 on the UF nanocomposite membrane was studied. Scanning electron microscopy (SEM), contact angle, and porosity were evaluated to characterize the mechanical characteristics of the membranes. The results show that adding TiO2 to the substrates increased the hydrophilicity and porosity of the substrates. The pure water flux of the Thin Film Nanocomposite (TFN) membrane manufactured utilizing a PSF substrate coated with 0.1 wt% TiO2 nanoparticles (denoted as Pc 0.1) improved at a rate of 35.28 l/m2.h, and for a PSF substrate coated with 0.2 wt% TiO2 nanoparticles (denoted as Pc 0.2) improved at a rate of 44 l/m2.h. Additionally, increasing TiO2 nanoparticle loading to 0.1 and 0.2 wt. percent resulted in higher water flow over 20 l/m2.h PSF commercial membrane. The results of the UF performance show that Pc 0.2 membrane offered the most promising results, with a high-water flux than commercial membranes without nano-TiO2 (Pc).
Nanotechnology
Duha S. Hassan; Mehdi Zayer
Abstract
The polycrystalline thin films were deposited on glass substrate at room temperature by pulsed laser deposition PLD technique. The effects of annealing treatment by used the Oil Thermal Annealing (OTA) process on the structural, optical and electrical properties of ZnO thin film films were investigated. ...
Read More ...
The polycrystalline thin films were deposited on glass substrate at room temperature by pulsed laser deposition PLD technique. The effects of annealing treatment by used the Oil Thermal Annealing (OTA) process on the structural, optical and electrical properties of ZnO thin film films were investigated. The film structure was investigated by X-ray diffraction to indicate that the heat treatment after the OTA process gives the optimized condition of crystalline. The transmission spectrum of the film was measured by UV-V is spectrophotometer, and the Urbach energy and forbidden band width were calculated. The surface topography of the film was observed by scanning electron microscopy (SEM) image of the ZnO thin film at the OTA process shows the changes in the shape and size of the grains. The atomic force microscopy (AFM) effect of heat treatment was demonstrated by the change in the surface roughness of the ZnO thin film. The electrical properties of thin film were optioned by Hall Effect technique. That these improvements in the ZnO thin film physical properties were annealing temperatures by OTA at 150 °C, 200 °C, 250 °C and 300 °C.
Nanotechnology
Muna H. Kareem; Adi M.; Haitham T. Hussein
Abstract
In this paper, Gas sensors for ethanol and methanol were created utilizing porous silicon (PSi).n-type silicon was employed for all PSi samples, photo-electrochemical etching technique (PECE) was used to prepare porous surface. The intensity of the three etchings current densities was 12, 24 and 30 mA ...
Read More ...
In this paper, Gas sensors for ethanol and methanol were created utilizing porous silicon (PSi).n-type silicon was employed for all PSi samples, photo-electrochemical etching technique (PECE) was used to prepare porous surface. The intensity of the three etchings current densities was 12, 24 and 30 mA / cm2, with 40% hydrofluoric acid concentration (HF) and a time of etching 10 minutes. Porous silicon (100) has been strictly studied by the structure and formation of surface bonding of the PSi layer; the structural properties, morphological characteristics, pore diameter, and roughness were described using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). All PSi samples were applied as a sensor for ethanol and methanol at room temperature. The results showed that the best sensitivity of PSi was to ethanol gas compared to methane under the same used conditions at etching current density 30mA/cm2, reaching about 1.809 at a concentration of 500 ppm. From these results, the PSi layers act as high-quality, low-cost gas sensors. It can be used as a replacement for expensive material that is used as gas sensors, which operate at low temperatures, including room temperature. The interest in this material is due to study the effect of extremely high surface to volume ratio (increasing surface area), and easy manufactured and compatibility with modern silicon microelectronics manufacturing technologies.
Nanotechnology
Barra L. Abbood; Khalid A. Sukkar; Jenan A. Al-Najar
Abstract
Air quality is an important factor for human breathing requirements. The presence of the particulate matter which is a mixture of solid particles and liquid droplets presence in atmosphere such as PM10 and PM2.5 in the indoor air leads to fatal problems for human health. In the present investigation, ...
Read More ...
Air quality is an important factor for human breathing requirements. The presence of the particulate matter which is a mixture of solid particles and liquid droplets presence in atmosphere such as PM10 and PM2.5 in the indoor air leads to fatal problems for human health. In the present investigation, two types of nanofilters (polyacrylonitrile PAN, 15wt.% and polyvinyl alcohol PVA 12wt.%) were synthesized using the electrospinning method. The polymeric solutions were prepared under high mixing conditions. The structural and morphological specifications of produced nanofibers were characterized using many measuring devices. Also, airflow characteristics across the prepared nanofilter were evaluated by designing and constructing an airflow apparatus. The apparatus consisted of two stainless steel sections and the middle zone was designed to fit the filter media. The characterization results indicated that the synthesized of PVA 12 wt.% nanofilter has uniform morphological distribution with fibers average diameter of 92 nm while the produced PAN with 15wt.% showed and an average fibers diameter of 556 nm. Moreover, the PVA nanofilter showed high-pressure values in comparison with the PAN filter. Interestingly, both filters provided high air permeability. Furthermore, the produced PAN nanofilter showed a high ability to capture the PM10 and PM2.5 due to the significant properties and specifications of nanofibers. Additionally, the produced nanofilter can be applied in air filtration processes effectively with low manufacturing costs.
Nanotechnology
Reem A. Saleh; Odai N. Salman; Mohammed O. Dawood
Abstract
In this work, well-oriented and homogeneous titanium dioxide (TiO2) nanorods (NRs) was synthesized by hydrothermal method. In this method, vertically aligned arrays of TiO2 were built on the conductive Fluorine–Tin–Oxide (FTO) glass substrate. Nanoparticles (NRs) of TiO2 showed a tetragonal ...
Read More ...
In this work, well-oriented and homogeneous titanium dioxide (TiO2) nanorods (NRs) was synthesized by hydrothermal method. In this method, vertically aligned arrays of TiO2 were built on the conductive Fluorine–Tin–Oxide (FTO) glass substrate. Nanoparticles (NRs) of TiO2 showed a tetragonal shape with a square top face, according to the image of the field emission scanning electron microscope (FE-SEM). The TiO2 NRs are polycrystalline, having two phases: rutile and anatase, according to X-ray diffraction (XRD) analysis. The optical properties of a TiO2 nanorods arrays were examined, including transmittance, absorption coefficient, and energy bandgap. An optical energy band gap of 3.18 eV was obtained. According to the photoluminescence emission measurement, the energy bandgap was 3.3 eV. For further study of the optical properties of the TiO2 Nanorods films, reflectance spectrum was used as a function of wavelength to estimate the value of the energy bandgap and its value was 3.45 eV. By comparing the values obtained from the three methods, it is found that they are closely alike, which confirms the formation of the TiO2 nanostructure.
Nanotechnology
Anwar Sabri Jawad; Qasim N. Thewaini; Sharafaldin Al-Musawi
Abstract
Aluminum oxide, often known as Al2O3, is a chemical compound of aluminum and oxygen with the formula Al2O3. It's the most common of many aluminum oxides, known as aluminum (III) oxide. The study investigates the cytotoxicity and antibacterial effects of Aluminum oxide nanoparticles (Al2O3-NPs) in different ...
Read More ...
Aluminum oxide, often known as Al2O3, is a chemical compound of aluminum and oxygen with the formula Al2O3. It's the most common of many aluminum oxides, known as aluminum (III) oxide. The study investigates the cytotoxicity and antibacterial effects of Aluminum oxide nanoparticles (Al2O3-NPs) in different cells and bacteria. Different characterization methods such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) have been used to evaluate morphologies and physicochemical properties of Al2O3-NPs. MTT technique is used for determining NPs cytotoxicity. The size distribution of Al2O3-NPs was 68 ± 12 nm in diameter, while the zeta potential was (-36 ± 10 mV). There is no toxicity by using the MTT assay, as well as showed antibacterial activity was formed at 200 µg/mL, while the higher antibacterial activity was occurring at (18 ± 0.2) and (17 ± 0.1) for Proteus Vulgaris and Streptococcus pyogenes, respectively. The findings confirmed that the Al2O3-NPs have small dimensions, high stability, and increased antibacterial activity.
Nanotechnology
Khaled Chahrour; Poh Choon Ooi; April Azlan Hamzah
Abstract
By applying dual anodization procedures of aluminum (Al) thin film over silicon substrate under controlled anodizing process conditions, a thin anodic alumina (AAO) pattern with hexagonal honeycomb-like arrangement nano-pores and highly-regular aligned arrays was created. Anodizing DC voltage was thought ...
Read More ...
By applying dual anodization procedures of aluminum (Al) thin film over silicon substrate under controlled anodizing process conditions, a thin anodic alumina (AAO) pattern with hexagonal honeycomb-like arrangement nano-pores and highly-regular aligned arrays was created. Anodizing DC voltage was thought to have an effect on pore size dimensions. With anodizing DC voltage, the pore diameter (30 - 110nm) showed a linear change. The rate of vertical growth of the nanopores was found to be proportional to the anodizing voltage. To achieve open-through pore nanostructure and ensure homogeneous electrochemical deposition of various nanostructures onto AAO pattern, a bottommost barrier layer of the AAO pattern was detached during dropping the DC voltage in the final period of the anodization process, followed by a pore widening wet treatment for numerous minutes at ambient temperature atmosphere. The features of the AAO pattern were inspected by using the field emission scanning microscope (FESEM) linked with an electron dispersive x-ray spectrometer (EDX) for chemical elements investigation.